首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   24篇
大气科学   17篇
地球物理   67篇
地质学   7篇
天文学   7篇
  2024年   1篇
  2021年   7篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有98条查询结果,搜索用时 468 毫秒
91.
Mean transit times (MTTs) can give useful insights into the internal processes of hydrological systems. However, our understanding of how they vary and scale remains unclear. We used MTT estimates obtained from δ18O data from 20, mostly nested, contrasting catchments in North East Scotland, ranging from 1 to 1700 km2. The estimated MTTs ranged between 270 and 1170 days and were used to test a previously developed multiple linear regression (MLR) model for MTT prediction based on metrics of soil cover, landscape organization and climate. We show that the controls on MTT identified by the MLR model hold with the independent data from these 20 sites and that the MLR can be used to predict MTT in ungauged montane catchments. The dominant controls also remain unchanged over four orders of magnitude of catchment size, suggesting no major change of dominant flow paths and mixing processes at larger scales. This is consistent with the fact that only the variance of MTT, rather than MTT, showed a scaling relationship. MTTs appeared to converge with increasing catchment scale, apparently due to the integration of heterogeneous headwater responses in larger downstream catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
92.
There is a need for more isotopic tracer studies at the mesoscale to extend our understanding of catchment transit times and their associated controls beyond smaller experimental sites (typically < 10 km2). This paper, therefore, examines the isotope hydrology of six mesoscale (101–102 km2) sub‐catchments of the 2000 km2 basin of the River Dee in northern Scotland. All the catchments were upland in character (mean altitude > 400 m) with similar suites of soil coverage (predominantly regosols, gleys, peats and podzols), although the relative distribution varied, as did the presence of other landscape features such as aquifers in Quaternary drifts and lakes. Input–output relationships of δ18O in precipitation and runoff revealed contrasting responses and differential damping which were broadly consistent with catchment characteristics. The mean transit times (MTTs) were estimated using a convolution integral with a Gamma distribution as the transfer function. These varied from 528 days in the most responsive catchments to > 800 days in catchments where the tracer signature was most damped. Shorter MTTs were found in sub‐catchments with a higher percentage cover of responsive soils (i.e. regosols, gleys and peats), whilst sub‐catchments with longest MTTs had a higher coverage of free‐draining podzolic and alluvial soils, as well as significant amount of stored water either in fluvio‐glacial aquifers or large lakes. The MTT of all six catchments had the same order of magnitude; this contrasts with studies in the Scottish Highlands with smaller (<10 km2) catchments where MTT has been shown to vary between 60 and 1200 days. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
93.
94.
Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow, tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance. Here, we examine the strengths and weaknesses of a data‐driven, spatially distributed tracer‐aided rainfall‐runoff model. The model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers. The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was based on an empirically based, lumped tracer‐aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and discharge at the outlet. Model performance for these criteria was reasonable (Nash–Sutcliffe efficiencies for discharge and isotope ratios were ~0.4–0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years, integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved the representation of spatio‐temporal process dynamics and gives a more robust framework for projecting environmental change impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   
95.
An explicit multi-layer subgrid-scheme was developed for ameso-/-scale model to consider subgrid-scale surface heterogeneity, dry deposition, biogenic and anthropogenic emission of trace gases. Since dry deposition measurements of highly reactive trace species are scarce we try to evaluate this scheme by heuristic principles. The results of simulations conducted for a 5×5 km2 resolution with and without thisscheme are evaluated by using results of a model run with 1×1 km2resolution, which is taken as a `grand thruth' and which has the same resolution as the subgrid. The explict multi-layer subgrid scheme provides a similar distribution of dry deposition fluxes as the much more computationally expensive simulation with the 1×1 km2 resolution.Dry deposition fluxes determined from observations give evidence that the explicit multi-layer subgrid scheme which does not require a constant flux approximation for a layer of several decameters leads to an improvement in determining the exchange between the atmosphere and the ground.Results of simulations with a microscale model show that the inhomogeneity at forest edges leads to an increase of the turbulent transports of up to a factor 4 compared to horizontally homogeneous terrain, which is assumed to be the conditions of the subgrid cells (and which is usually the assumption for the entire grid cell in mesoscale models). Inhomogeneity inside an extended stand of trees causes an overall increase of 5–10% withhigh local extremes, i.e. such an inhomogeneity results to an underestimation of dry deposition in meso-/-scale models. The effects are most pronounced for a wind direction perpendicular to the forest edge.  相似文献   
96.
In this paper we present thermal characteristics of coal fires as measured during simulated fires under an experimental setting in Germany in July 2002. It is thus a continuation of the previously published paper “Thermal surface characteristics of coal fire 1: Results of in-situ measurement”, in which we presented temperature measurements of real subsurface coal fires in China [Zhang, J., Kuenzer, C., accepted for publication. Thermal Surface Characteristics of Coal Fires 1: Results of in-situ measurements. Accepted for publication at Journal of Applied Geophysics.]. The focus is on simulated coal fires, which are less complex in nature than fires under natural conditions. In the present study we simulated all the influences usually occurring under natural conditions in a controllable manner (uniform background material of known thermal properties, known ventilation pathways, homogeneous coal substrate), creating two artificial outdoor coal fires under simplified settings. One surface coal fire and one subsurface coal fire were observed over the course of 2 days. The set up of the fires allowed for measurements not always feasible under “real” in-situ conditions: thus compared to the in-situ investigations presented in paper one we could retrieve numerous temperature measurements inside of the fires. Single temperature measurements, diurnal profiles and airborne thermal surveying present the typical temperature patterns of a small surface-and a subsurface fire under undisturbed conditions (easily accessible terrain, 24 hour measurements period, homogeneous materials). We found that the outside air temperature does not influence the fire's surface temperature (up to 900 °C), while fire centre temperatures of up to 1200 °C strongly correlate with surface temperatures of the fire. The fires could heat their surrounding up to a distance of 4.5 m. However, thermal anomalies on the background surface only persist as long as the fire is burning and disappear very fast if the heat source is removed. Furthermore, heat outside of the fires is transported mainly by convection and not by radiation. In spatial thermal line scanner data the diurnal thermal patterns of the coal fire are clearly represented. Our experiments during that data collection also visualize the thermal anomaly differences between covered (underground) and uncovered (surface) coal fires. The latter could not be observed in-situ in a real coal fire area. Sub-surface coal fires express a much weaker signal than open surface fires and contrast only by few degrees against the background. In airborne thermal imaging scanner data the fires are also well represented. Here we could show that the mid-infrared domain (3.8 μm) is more suitable to pick up very hot anomalies, compared to the common thermal (8.8 μm) domain. Our results help to understand coal fires and their thermal patterns as well as the limitations occurring during their analysis. We believe that the results presented here can practicably help for the planning of coal fire thermal mapping campaigns — including remote sensing methods and the thermal data can be included into numerical coal fire modelling as initial or boundary conditions.  相似文献   
97.
Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large -scale overview of the spatio-temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically-affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time-variant rainfall-runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.  相似文献   
98.
Long-term data are crucial for understanding ecological responses to climate and land use change; they are also vital evidence for informing management. As a migratory fish, Atlantic salmon are sentinels of both global and local environmental change. This paper reviews the main insights from six decades of research in an upland Scottish stream (Girnock Burn) inhabited by a spring Atlantic salmon population dominated by multi-sea-winter fish. Research began in the 1960s providing a census of returning adults, juvenile emigrants and in-stream production of Atlantic salmon. Early research pioneered new monitoring techniques providing new insights into salmon ecology and population dynamics. These studies underlined the need for interdisciplinary approaches for understanding salmon interactions with physical, chemical and biological components of in-stream habitats at different life-stages. This highlighted variations in catchment-scale hydroclimate, hydrology, geomorphology and hydrochemistry as essential to understanding freshwater habitats in the wider landscape context. Evolution of research has resulted in a remarkable catalogue of novel findings underlining the value of long-term data that increases with time as modelling tools advance to leverage more insights from “big data”. Data are available on fish numbers, sizes and ages across multiple life stages, extending over many decades and covering a wide range of stock levels. Combined with an unusually detailed characterization of the environment, these data have enabled a unique process-based understanding of the controls and bottlenecks on salmon population dynamics across the entire lifecycle and the consequences of declining marine survival and ova deposition. Such powerful datasets, methodological enhancements and the resulting process understanding have informed and supported the development of fish population assessment tools which have been applied to aid management of threatened salmon stocks at large-catchment, regional and national scales. Many pioneering monitoring and modelling approaches developed have been applied internationally. This history shows the importance of integrating discovery science with monitoring for informing policy development and assessing efficacy of management options. It also demonstrates the need to continue to resource long-term sites, which act as a focus for inter-disciplinary research and innovation, and where the overall value of the research greatly exceeds the costs of individual component parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号