首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   24篇
大气科学   17篇
地球物理   67篇
地质学   7篇
天文学   7篇
  2024年   1篇
  2021年   7篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
41.
42.
43.
We outline the development of a simple, coupled hydrology–biogeochemistry model for simulating stream discharge and dissolved organic carbon (DOC) dynamics in data sparse, permafrost‐influenced catchments with large stores of soil organic carbon. The model incorporates the influence of active layer dynamics and slope aspect on hydrological flowpaths and resulting DOC mobilization. Calibration and evaluation of the model was undertaken using observations from Granger Basin within the Wolf Creek research basin, Yukon, northern Canada. Results show that the model was able to capture the dominant hydrological response and DOC dynamics of the catchment reasonably well. Simulated DOC was highly correlated with observed DOC (r2 = 0.65) for the study period. During the snowmelt period, the model adequately captured the observed dynamics, with simulations generally reflecting the timing and magnitude of the observed DOC and stream discharge. The model was less successful over the later summer period although this partly reflected a lack of DOC observations for calibration. The developed model offers a valuable framework for investigating the interactions between hydrological and DOC processes in these highly dynamic systems, where data acquisition is often very difficult. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   
44.
Quantifying and partitioning evapotranspiration (ET) into evaporation and transpiration is challenging but important for interpreting vegetation effects on the water balance. We applied a model based on the theory of maximum entropy production to estimate ET for shrubs for the first time in a low‐energy humid headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the growing season was returned to the atmosphere through ET (59 ± 2% as transpiration), with 22% of rainfall ascribed to interception loss and understory ET. The remainder of rainfall percolated below the rooting zone. The maximum entropy production model showed good capability for total ET estimation, in addition to providing a first approximation for distinguishing evaporation and transpiration in such ecosystems. This study shows that this simple and low‐cost approach has potential for local to regional ET estimation with availability of high‐resolution hydroclimatic data. Limitations of the approach are also discussed.  相似文献   
45.
Over a 4‐month summer period, we monitored how forest (Pinus sylvestris ) and heather moorland (Calluna spp. and Erica spp.) vegetation canopies altered the volume and isotopic composition of net precipitation (NP) in a southern boreal landscape in northern Scotland. During that summer period, interception losses were relatively high and higher under forests compared to moorland (46% of gross rainfall [GR] compared with 35%, respectively). Throughfall (TF) volumes exhibited marked spatial variability in forests, depending upon local canopy density, but were more evenly distributed under heather moorland. In the forest stands, stemflow was a relatively small canopy flow path accounting for only 0.9–1.6% of NP and only substantial in larger events. Overall, the isotopic composition of NP was not markedly affected by canopy interactions; temporal variation of stable water isotopes in TF closely corresponded to that of GR with differences of TF‐GR being ?0.52‰ for δ2H and ?0.14‰ for δ18O for forests and 0.29‰ for δ2H and ?0.04‰ for δ18O for heather moorland. These differences were close to, or within, analytical precision of isotope determination, though the greater differences under forest were statistically significant. Evidence for evaporative fractionation was generally restricted to low rainfall volumes in low intensity events, though at times, subtle effects of liquid–vapour moisture exchange and/or selective transmission though canopies were evident. Fractionation and other effects were more evident in stemflow but only marked in smaller events. The study confirmed earlier work that increased forest cover in the Scottish Highlands will likely cause an increase in interception and green water fluxes at the expenses of blue water fluxes to streams. However, the low‐energy, humid environment means that isotopic changes during such interactions will only have a minor overall effect on the isotopic composition of NP.  相似文献   
46.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   
47.
48.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
49.
Soil water storage and stable isotopes dynamics were investigated in dominant soil–vegetation assemblages of a wet northern headwater catchment (3.2 km2) with limited seasonality in precipitation. We determined the relative influence of soil and vegetation cover on storage and transmission processes. Forested and non‐forested sites were compared, on poorly drained histosols in riparian zones and freely draining podzols on steeper hillslopes. Results showed that soil properties exert a much stronger influence than vegetation on water storage dynamics and fluxes, both at the plot and catchment scale. This is mainly linked to the overall energy‐limited climate, restricting evaporation, in conjunction with high soil water storage capacities. Threshold behaviour in runoff responses at the catchment scale was associated with differences in soil water storage and transmission dynamics of different hydropedological units. Linear input–output relationships occurred when runoff was generated predominantly from the permanently wet riparian histosols, which show only small dynamic storage changes. In contrast, nonlinear runoff generation was related to transient periods of high soil wetness on the hillslopes. During drier conditions, more marked differences in soil water dynamics related to vegetation properties emerged, in terms of evaporation and impacts on temporarily increasing dynamic storage potential. Overall, our results suggest that soil type and their influence on runoff generation are dominant over vegetation effects in wet, northern headwater catchments with low seasonality in precipitation. Potential increase of subsurface storage by tree cover (e.g. for flood management) will therefore be spatially distributed throughout the landscape and limited to rare and extreme dry conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
50.
Tracer investigations were combined with a geographical information system (GIS) analysis of the 31 km2 Girnock catchment (Cairngorm Mountains, Scotland) in order to understand hydrological functioning by identifying dominant runoff sources and estimating mean residence times. The catchment has a complex geology, soil cover and topography. Gran alkalinity was used to demonstrate that catchment geology has a dominant influence on baseflow chemistry, but flow paths originating in acidic horizons in the upper soil profiles controlled stormflow alkalinity. Chemically based hydrograph separations at the catchment scale indicated that ~30% of annual runoff was derived from groundwater sources. Similar contributions (23–36%) were estimated for virtually all major sub‐basins. δ18O of precipitation (mean: ? 9·4‰; range: ? 16·1 to ? 5·0‰) and stream waters (mean: ? 9·1‰; range: ? 11·6 to ? 7·4‰) were used to assess mean catchment and sub‐basin residence times, which were in the order ~4–6 months. GIS analysis showed that these tracer‐based diagnostic features of catchment functioning were consistent with the landscape organization of the catchment. Soil and HOST (Hydrology of Soil Type) maps indicated that the catchment and individual sub‐basins were dominated by hydrologically responsive soils, such as peats (Histosol), peaty gleys (Histic Gleysols) and rankers (Umbric Leptosols and Histosols). Soil cover (in combination with a topographic index) predicted extensive areas of saturation that probably expand during hydrological events, thus providing a high degree of hydrological connectivity between catchment hillslopes and stream channel network. This was validated by aerial photographic interpretation and groundtruthing. These characteristics of hydrological functioning (i.e. dominance of responsive hydrological pathways and short residence times) dictate that the catchment is sensitive to land use change impacts on the quality and quantity of streamflows. It is suggested that such conceptualization of hydrological functioning using tracer‐validated GIS analysis can play an important role in the sustainable management of river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号