首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   5篇
  国内免费   6篇
测绘学   4篇
大气科学   13篇
地球物理   52篇
地质学   89篇
海洋学   14篇
天文学   26篇
综合类   2篇
自然地理   16篇
  2023年   2篇
  2021年   7篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   10篇
  2016年   12篇
  2015年   16篇
  2014年   8篇
  2013年   20篇
  2012年   13篇
  2011年   12篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1991年   2篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
211.
Mineralogy and Petrology - The Keivy alkaline province, Kola Peninsula, NW Russia, consists of vast alkali granite massifs and several dike-like nepheline syenite bodies. It contains numerous...  相似文献   
212.
An integrated logging and deep drilling data interpretation has provided insight to the section of the Yurubcheno-Tokhomo field. Five phases of salt deposition of 50–350 m in the cumulative thickness have been identified (top–bottom): upper Litvintsevo, Angara, upper Belsk, upper Usolye, and lower Usolye. Cumulative thickness of Cambrian salts was found to reach 550–600 m, with predominance of 1- to 9-m salt layers. In the Cambrian, the study area was a shallow warm basin of sabkha type and favored salt evaporation. Regression periods controlled the thicknesses of salts.  相似文献   
213.
214.
We report new data on the stratigraphy, mineralogy and geochemistry of the rocks and ores of the Maslovsky Pt–Cu–Ni sulfide deposit which is thought to be the southwestern extension of the Noril’sk 1 intrusion. Variations in the Ta/Nb ratio of the gabbro-dolerites hosting the sulfide mineralization and the compositions of their pyroxene and olivine indicate that these rocks were produced by two discrete magmatic pulses, which gave rise to the Northern and Southern Maslovsky intrusions that together host the Maslovsky deposit. The Northern intrusion is located inside the Tungusska sandstones and basalt of the Ivakinsky Formation. The Southern intrusion cuts through all of the lower units of the Siberian Trap tuff-lavas, including the Lower Nadezhdinsky Formation; demonstrating that the ore-bearing intrusions of the Noril’sk Complex post-date that unit. Rocks in both intrusions have low TiO2 and elevated MgO contents (average mean TiO2 <1 and MgO?=?12?wt.%) that are more primitive than the lavas of the Upper Formations of the Siberian Traps which suggests that the ore-bearing intrusions result from a separate magmatic event. Unusually high concentrations of both HREE (Dy+Yb+Er+Lu) and Y (up to 1.2 and 2.1?ppm, respectively) occur in olivines (Fo79.5 and 0.25% NiO) from picritic and taxitic gabbro-dolerites with disseminated sulfide mineralization. Thus accumulation of HREE, Y and Ni in the melts is correlated with the mineral potential of the intrusions. The TiO2 concentration in pyroxene has a strong negative correlation with the Mg# of both host mineral and Mg# of host rock. Sulfides from the Northern Maslovsky intrusion are predominantly chalcopyrite–pyrrhotite–pentlandite with subordinate and minor amounts of cubanite, bornite and millerite and a diverse assemblage of rare precious metal minerals including native metals (Au, Ag and Pd), Sn–Pd–Pt–Bi–Pb compounds and Fe–Pt alloys. Sulfides from the Southern Maslovsky intrusion have δ 34S?=?5–6‰ up to 10.8‰ in two samples whereas the country rock basalt have δ 34S?=?3–4‰, implying there was no in situ assimilation of surrounding rocks by magmas.  相似文献   
215.
The Sichevita and Poniasca plutons belong to an alignment of granites cutting across the metamorphic basement of the Getic Nappe in the South Carpathians. The present work provides SHRIMP age data for the zircon population from a Poniasca biotite diorite and geochemical analyses (major and trace elements, Sr–Nd isotopes) of representative rock types from the two intrusions grading from biotite diorite to biotite K-feldspar porphyritic monzogranite. U–Pb zircon data yielded 311 ± 2 Ma for the intrusion of the biotite diorite. Granites are mostly high-K leucogranites, and biotite diorites are magnesian, and calcic to calc-alkaline. Sr, and Nd isotope and trace element data (REE, Th, Ta, Cr, Ba and Rb) permit distinguishing five different groups of rocks corresponding to several magma batches: the Poniasca biotite diorite (P1) shows a clear crustal character while the Poniasca granite (P2) is more juvenile. Conversely, Sichevita biotite diorite (S1), and a granite (S2*) are more juvenile than the other Sichevita granites (S2). Geochemical modelling of major elements and REE suggests that fractional crystallization can account for variations within P1 and S1 groups. Dehydration melting of a number of protoliths may be the source of these magma batches. The Variscan basement, a subduction accretion wedge, could correspond to such a heterogeneous source. The intrusion of the Sichevita–Poniasca plutons took place in the final stages of the Variscan orogeny, as is the case for a series of European granites around 310 Ma ago, especially in Bulgaria and in Iberia, no Alleghenian granitoids (late Carboniferous—early Permian times) being known in the Getic nappe. The geodynamical environment of Sichevita–Poniasca was typically post-collisional of the Variscan orogenic phase.  相似文献   
216.
Baotite occurs as a late phase in the Kval?ya lamproite dyke and in the fenitized granite adjacent to the dyke, suggesting that baotite formed during reactions between rock and fluids derived from a volatile-rich lamproitic magma. Most of the analyzed grains of baotite from the Kval?ya lamproite show compositions close to the ideal Nb-free end-member Ba4Ti8Si4O28Cl. Compilation of all published baotite analyses suggests that the major compositional variations of baotite occur between the Nb-free end member Ba4Ti8Si4O28Cl, and a Nb-rich end member Ba4Ti2Fe2+ 2Nb4Si4O28Cl. However, a Pb-bearing baotite, showing significant concentrations of Ca, Sr, Pb and K, and approximately 3 Ba p.f.u., was also identified from the Kval?ya lamproite. Euhedral fluorapatite formed as an early phase during crystallization of the lamproite magma, while anhedral REE-rich fluorapatite overgrowths on the euhedral grains formed during reactions with the late magmatic fluid. Fluorapatite contains up to 1.2?F p.f.u., but only traces of Cl. Other F-rich, but Cl-poor minerals of the lamproite include fluoro-potassic-magnesio-arfvedsonite, fluoro-phlogopite, and yangzhumingite. The presence of baotite together with a range of high-F, but low-Cl mineral phases suggests that the minerals formed in equilibrium with a high-F, Cl-bearing hydrous fluid. The high Cl-content of baotite demonstrates that Cl is strongly partitioned into this mineral in the presence of a Cl-bearing F-rich hydrous fluid. We suggest that a combination of high aSi, aTi, aBa, and fO2, but low aCa of the fluid enabled baotite formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号