首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   29篇
测绘学   10篇
大气科学   9篇
地球物理   92篇
地质学   43篇
海洋学   8篇
天文学   3篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   15篇
  2017年   15篇
  2016年   14篇
  2015年   10篇
  2014年   10篇
  2013年   12篇
  2012年   13篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
51.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   
52.
In order to effectively utilize results from quasi-static cyclic testing on structural components for the earthquake-induced collapse risk quantification of structures, the need exists to establish collapse-consistent loading protocols representing the asymmetric lateral drift demands of structures under low-probability of occurrence earthquakes. This paper summarizes the development of such protocols for experimental testing of steel columns prone to inelastic local buckling. The protocols are fully defined with a deformation- and a force-controlled parameter. They are generally applicable to quantify the capacity and demands of steel columns experiencing constant and variable axial load coupled with lateral drift demands. Through rigorous nonlinear earthquake collapse simulations, it is found that the building height, the column's local slenderness ratio, and ground motion type have the largest influence on the dual-parameter loading protocol indexes. Comprehensive comparisons with measured data from full-scale shake table collapse tests suggest that unlike routinely used symmetric cyclic loading histories, the proposed loading protocol provides sufficient information for modeling strength and stiffness deterioration in steel columns at large inelastic deformations.  相似文献   
53.
Strength-reduction factors that reduce ordinates of floor spectra acceleration due to nonlinearity in the secondary system are investigated. In exchange for permitting some inelastic deformation to occur in the secondary system or its supports, these strength reduction factors allow to design the nonstructural elements or their supports for lateral forces that are smaller than those that would be required to maintain them elastically during earthquakes. This paper presents the results of a statistical analysis on component strength-reduction factors that were computed considering floor motions recorded on instrumented buildings in California during various earthquakes. The effect of yielding in the component or its anchorage/bracing in offering protection against excessive component acceleration demands is investigated. It is shown that strength-reduction factors computed from floor motions are significantly different from those computed from ground motions recorded on rock or on firm soils. In particular, they exhibit much larger reductions for periods tuned or nearly tuned to the dominant modal periods of the building response. This is due to the large differences in frequency content of ground motions and floor motions, with the former typically characterized by wide-band spectra whereas the latter are characterized by narrow-band spectra near periods of dominant modes in the response of the building. Finally, the study provides approximate equations to estimate component strength-reduction factors computed through nonlinear regression analyses.  相似文献   
54.
This paper presents results of numerical modeling of site response for Euroseistest. Ground motion across a very detailed model of the subsoil of this valley has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms. These results are then compared with published studies of observed site effects at this basin and with a detailed analysis of two events in the time domain. It is discussed in which sense it is possible to obtain a good fit between observations and 1D models, even though the real behavior involves locally generated Love waves. For this reason, it can be misleading to rely on an incomplete observation such as empirical transfer functions. Finally, it is stressed that in order to predict ground motion in alluvial valleys the information contained in the phase cannot be neglected.  相似文献   
55.
Dynamic effects of moving loads on road pavements: A review   总被引:3,自引:0,他引:3  
This review paper deals with the dynamic response of road pavements to moving loads on their surface. The road pavement can be modeled as a beam, a plate, or the top layer of a layered soil medium. The foundation soil can be modeled as a system of elastic springs and dashpots or a homogeneous or layered half-space. The material behavior of the pavement can be elastic or viscoelastic, while that of the foundation layers elastic, viscoelastic, water-saturated poroelastic or even inelastic. The loads are concentrated or distributed of finite extent, may vary with time and move with constant or variable speed. The analysis is done by analytical, analytical/numerical and purely numerical methods, such as finite element and boundary element methods, under conditions of plane strain or full three-dimensionality. A number of representative examples is presented in order to illustrate the problem and the methods of analysis, demonstrate the dynamic effects of moving loads on the layered soil medium and indicate the implications of the results on road and airport pavement design.  相似文献   
56.
This paper revisits the seminal work of Seed and Booker (1977) [21] on the design of infinitely permeable drains for liquefaction mitigation. It is shown that their basic mathematical assumption for the rate of earthquake-induced excess pore pressure generation overlooks sand fabric evolution effects during cyclic loading and eventually leads to underestimation of the drain effectiveness. This is because such effects cause peak excess pore pressures to be attained at the early stages of partially drained shaking, followed by a gradual attenuation even if shaking continues undiminished, a response feature not predicted by the original formulation. In addition, special emphasis is given to the analytical relation describing the excess pore pressure build-up until liquefaction in undrained tests. This relation was considered unique in the original work, for reasons of simplicity, thus neglecting sand fabric evolution effects that may differentiate it for various sands, densities and loading conditions. Hence, a revised analytical formulation is proposed, which takes into account both above effects of sand fabric evolution. The paper provides a quantitative assessment of their influence on drain effectiveness and establishes a new set of charts for drain design. Experimental measurements from shaking table tests, as well as robust numerical simulations are shown, which underline the necessity for the revised solution and design charts.  相似文献   
57.
This paper presents a methodology and its software implementation for the performance evaluation of low-cost accelerometer and magnetometer sensors for use in geomatics applications. A known mathematical calibration model has been adopted. The method was completed with statistical methodologies for adjusting observations and has been extended to calculate accuracies for the attitude, heading, and tilt angles estimation that are of interest to geomatics applications. The evaluation method consists of two stages. First, the evaluation method reviews the total magnitude of acceleration or the strength of the magnetic field. Second, the evaluation is more detailed and concerns the determination of mathematical parameters that describe both accelerometer and magnetometer working model. A software tool that implements the evaluation model has been developed and is applied both in accelerometer and magnetometer measurement data-sets acquired from a low-cost sensor system.  相似文献   
58.
A novel set of SAC/FEMA‐style closed‐form expressions is presented to accurately assess structural safety under seismic action. Such solutions allow the practical evaluation of the risk integral convolving seismic hazard and structural response by using a number of idealizations to achieve a simple analytical form. The most heavily criticized approximation of the SAC/FEMA formats is the first‐order power‐law fit of the hazard curve. It results to unacceptable errors whenever the curvature of the hazard function becomes significant. Adopting a second‐order fit, instead, allows capturing the hazard curvature at the cost of necessitating new analytic forms. The new set of equations is a complete replacement of the original, enabling (a) accurate estimation of the mean annual frequency of limit‐state exceedance and (b) safety checking for specified performance objectives in a code‐compatible format. More importantly, the flexibility of higher‐order fitting guarantees a wider‐range validity of the local hazard approximation. Thus, it enables the inversion of the formulas for practically estimating the allowable demand or the required capacity to fulfill any design objective. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
During the planning of an urban environment, usually only economic and social parameters are taken into account. As a result, urban areas are susceptible to natural disasters, which cause extensive damages in them, because the cities or towns have been repeatedly located in vulnerable areas. In this study, for the protection of human environment, is proposed a unique approach of urban planning and sustainable development. The study area is Trikala Prefecture (Western Thessaly, Central Greece). An integrated evaluation of the suitable areas for urban growth and light industry development is proposed by using mainly natural hazards as well as geological–geomorphological–geographical characteristics of the study area. The used parameters were correlated by using the analytical hierarchical process (AHP) method and incorporated into a geographic information system (GIS) in order to produce the corresponding suitability maps. The study area is classified in five categories of very high, high, moderate, low, and very low suitability for urban growth and industrial development. Moreover, the spatio-temporal changes of the urban limits are studied since 1885 for the three major towns (Trikala, Kalambaka and Pyli) of the study area. These changes sketch out the urban growth trend. The comparison between the urban growth trend with the potential suitability for urban growth and industrial development of these towns lead to discrepancies. These can be attributed mainly to the fact that in the majority of cases, only geographical, social, and economical factors were used for urban development, whereas in our study, natural hazards, geomorphological, and geographical parameters were quantified and taken into account.  相似文献   
60.
The original version of this article was published in Central European Journal of Geosciences volume 1, issue 4 (2009), pp 431–442, DOI:10.2478/v10085-009-0029-0. Unfortunately the original version of this article contains mistakes in authors names which we correct here. Editorial staff of the journal apologise for any inconvenience that may result from the oversight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号