首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   29篇
测绘学   10篇
大气科学   9篇
地球物理   82篇
地质学   43篇
海洋学   8篇
天文学   3篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   15篇
  2017年   15篇
  2016年   14篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   13篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有161条查询结果,搜索用时 250 毫秒
121.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
122.
Unbonded posttensioning anchors a rocking structural member to its foundation and produces its controlled rocking response when the member undergoes seismic action. Unlike rocking of free-standing bodies, little attention has been given to the dynamic behavior of these controlled rocking members. This paper utilizes experiments of concrete structural members with unbonded posttensioning, varying member geometries, and levels of initial posttensioning force to (a) characterize the associated impact energy loss and (b) improve modeling of controlled rocking motions. Experimental results show that impact energy loss in controlled rocking members can be captured accurately using the coefficient of restitution (r) approach of the modified simple rocking model (MSRM). Based on the MSRM, a controlled rocking model (CRM) is developed that additionally accounts for the variations in contact length at the member-to-foundation (rocking) interface. The CRM reproduces the experimental responses of controlled rocking members with good accuracy and is used to investigate controlled rocking motions under horizontal base excitations.  相似文献   
123.
This paper proposes methodological developments for quantifying the impact of residual axial shortening of first-story steel columns on earthquake loss estimations in steel moment-resisting frame (MRF) buildings. A new formulation is proposed that accounts for the likelihood of having to demolish a steel MRF building due to column residual axial deformations in addition to residual story-drift ratios. The formulation is informed by means of data from a comprehensive survey conducted worldwide to assess the likelihood of steel column repairability due to residual axial shortening. A practical method for quantifying column axial-shortening in parameterized system-level numerical simulations is presented. The proposed approach is illustrated by conducting economic seismic loss estimations in two case-study steel MRF buildings designed in urban California according to the current seismic design practice. It is found that when the ground-motion duration is appreciable, the examined steel MRFs are more prone to column axial-shortening than residual story-drifts at moderate to high seismic intensities. The results suggest that economic losses due to demolition may be underestimated if column residual axial-shortening is neglected from loss estimations. Limitations as well as directions for future research are discussed.  相似文献   
124.
Hyporheic exchange influences water quality and controls numerous physical, chemical, and biological processes. Despite its importance, hyporheic exchange and the associated dynamics of solute mixing are often difficult to characterize due to spatial (e.g., sedimentary heterogeneity) and temporal (e.g., river stage fluctuation) variabilities. This study coupled geophysical techniques with physical and chemical sediment analyses to map sedimentary architecture and quantify its influence on hyporheic exchange dynamics within a compound bar deposit in a gravel-dominated river system in southwestern Ohio. Electromagnetic induction (EMI) was used to quantify variability in electrical conductivity within the compound bar. EMI informed locations of electrode placement for time-lapse electrical resistivity imaging (ERI) surveys, which were used to examine changes in electrical resistivity driven by hyporheic exchange. Both geophysical methods revealed a zone of high electrical conductivity in the center of the bar, identified as a fine-grained cross-bar channel fill. The zone acts as a baffle to flow, evidenced by stable electrical conditions measured by time-lapse ERI over the study period. Large changes in electrical resistivity throughout the survey period indicate preferential flowpaths through higher permeability sands and gravels. Grain size analyses confirmed sedimentological interpretations of geophysical data. Loss on ignition and x-ray fluorescence identified zones with higher organic matter content that are locations for potentially enhanced geochemical activity within the cross-bar channel fill. Differences in the physical and geochemical characteristics of cross-bar channel fills play an important role in hyporheic flow dynamics and nutrient processing within riverbed sediments. These findings enhance our understanding of the applications of geophysical methods in mapping riverbed heterogeneity and highlight the importance of accurately representing geomorphologic features and heterogeneity when studying hyporheic exchange processes.  相似文献   
125.
The development of high spatial resolution digital elevation models takes place via the use of GeoEye-1 stereo-pair imagery, providing highly accurate geometrical representations of complex riverine systems. The combination of geographic information systems with hydraulic models facilitates the exploitation of satellite topographic information throughout the cross-section extraction process. One-dimensional HEC-RAS and combined 1D/2D HEC-RAS models are adjusted by making use of the resulting high-resolution input. Several hydraulic simulations are effectuated in order to test how significantly DEM resolution affects hydraulic modelling results, with regard also to the model dimensionality. The ability of the combined 1D/2D model, based mainly on the high-accuracy input data, provides an accurate estimate of the flood hazard area. Flood-prone areas could take advantage of high-accuracy results and facilitate the effective management of extreme events and sufficient decision making.  相似文献   
126.
When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non‐negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single‐period (e.g., first‐mode), spectral acceleration would require careful record selection at each site and result to significant site‐to‐site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
127.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   
128.
129.
The investigation of structural single rocking walls (SRWs) continues to gain interest as they produce self-centering lateral load responses with reduced structural damage. The simple rocking model with modifications has been shown to capture these responses accurately if the SRW and its underlying base are infinitely rigid. This paper advances previous rocking models by accounting for (1) the inelastic actions at or near the base of the SRW and (2) the flexural responses within the wall. Included in the proposed advancements are hysteretic and inherent viscous damping associated with these two deformation components so that the total dynamic responses of SRWs can be captured with good accuracy. A system of nonlinear equations of motion is developed, in which the rocking base is discretized into fibers using a zero-length element to locate the associated compressive deformations and damage. The flexural deformations of the rocking body are captured using an elastic term, while the impact events are modeled using impulse-momentum equations. Comparisons with experiments of structural precast concrete and masonry SRWs show that the proposed approach accurately estimates the dynamic responses of different SRWs with and without unbonded posttensioning, for various dynamic excitations and degrees of hysteretic action. Using the proposed approach, a numerical investigation employs different configurations of structural SRWs to quantify the various sources of energy loss, including hysteretic action and impact damping, during various horizontal ground motions.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号