首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   8篇
测绘学   3篇
大气科学   3篇
地球物理   37篇
地质学   29篇
海洋学   11篇
天文学   17篇
综合类   1篇
自然地理   11篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
  1944年   1篇
排序方式: 共有112条查询结果,搜索用时 46 毫秒
71.
Despite the scant quantitative data available in the literature, it has been hypothesized that some chemical compounds can have deleterious effects on soil stabilization with lime and cements (e.g., nitrates, phosphates and chlorides). This study intends to assess their influence on soil stabilization quantitatively. An original experimental procedure was followed. Selected soils were mixed with a potential deleterious compound at a concentration representative of what can be found in the field. The performance of the different mixtures in terms of soil stabilization was then assessed by performing mechanical tests on samples submitted to several curing conditions (temperature and humidity). The results showed that the tested compounds are likely to alter the soil stabilization processes and thus lower the mechanical performance of the stabilized soil. The results also showed that it is not possible to determine a single threshold value for the compounds considered because their influence on soil stabilization is also a function of the nature of the soil (silt or fine sand), the type of cement (CEM I or CEM II) and the curing conditions.  相似文献   
72.
Data‐driven techniques based on machine learning algorithms are becoming popular in hydrological modelling, in particular for forecasting. Artificial neural networks (ANNs) are often the first choice. The so‐called instance‐based learning (IBL) has received relatively little attention, and the present paper explores the applicability of these methods in the field of hydrological forecasting. Their performance is compared with that of ANNs, M5 model trees and conceptual hydrological models. Four short‐term flow forecasting problems were solved for two catchments. Results showed that the IBL methods often produce better results than ANNs and M5 model trees, especially if used with the Gaussian kernel function. The study showed that IBL is an effective data‐driven method that can be successfully used in hydrological forecasting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
73.
74.
In the French model of deep nuclear wastes repositories, the galleries should be backfilled with excavated argillite after the site has been filled. After thousands of years, the degradation of the concrete lining of the galleries will generate an alkaline solute (pH > 12) that would circulate through the backfill. The goal of this paper is to describe the impact of such solute circulation on the properties of compacted argillite. Since additives (bentonite, sand or lime) are often introduced in the remoulded argillite for the backfill, such mixtures were also studied. Saturated-portlandite water was circulated through compacted samples for 3, 6 and 12 months at 60 °C. The shear strength behaviour of the samples was determined with triaxial tests. The microstructure of the samples was analysed via mercury intrusion porosimetry tests and scanning electron microscopy. The results showed that the influence of the alkaline fluid on the properties of the argillite is a function of the nature of the additive. In the case of the calcareous sand, no major changes were observed. The pure argillite underwent a slight decrease in its cohesion due to limited dissolution of its clayey particles. Conversely, intense alteration of the bentonite–argillite mixture was observed, and the shear strength behaviour was modified. Lime addition improved the mechanical characteristics of the argillite.  相似文献   
75.
Interactions between aqueous amino acids and mineral surfaces influence many geochemical processes from biomineralization to the origin of life. However, the specific reactions involved and the attachment mechanisms are mostly unknown. We have studied the adsorption of l-aspartate on the surface of rutile (α-TiO2, pHPPZC = 5.4) in NaCl(aq) over a wide range of pH, ligand-to-solid ratio and ionic strength, using potentiometric titrations and batch adsorption experiments. The adsorption is favored below pH 6 with a maximum of 1.2 μmol of adsorbed aspartate per m2 of rutile at pH 4 in our experiments. The adsorption decreases at higher pH because the negatively charged aspartate molecule is repelled by the negatively charged rutile surface above pHPPZC. At pH values of 3-5, aspartate adsorption increases with decreasing ionic strength. The adsorption of aspartate on rutile is very similar to that previously published for glutamate (Jonsson et al., 2009). An extended triple-layer model was used to provide a quantitative thermodynamic characterization of the aspartate adsorption data. Two reaction stoichiometries identical in reaction stoichiometry to those for glutamate were needed. At low surface coverages, aspartate, like glutamate, may form a bridging-bidentate surface species binding through both carboxyl groups, i.e. “lying down” on the rutile surface. At high surface coverages, the reaction stoichiometry for aspartate was interpreted differently compared to glutamate: it likely involves an outer-sphere or hydrogen bonded aspartate surface species, as opposed to a partly inner-sphere complex for glutamate. Both the proposed aspartate species are qualitatively consistent with previously published ATR-FTIR spectroscopic results for aspartate on amorphous titanium dioxide. The surface complexation model for aspartate was tested against experimental data for the potentiometric titration of aspartate in the presence of rutile. In addition, the model correctly predicted a decrease of the isoelectric point with increased aspartate concentration consistent with previously published studies of the aspartate-anatase system. Prediction of the surface speciation of aspartate on rutile indicates that the relative proportions of the two complexes are a strong function of environmental conditions, which should be taken into account in considerations of geochemical systems involving the interactions of biomolecules and minerals in electrolyte solutions.  相似文献   
76.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
77.
The nature of adsorbed arsenate species for a wide range of minerals and environmental conditions is fundamental to prediction of the migration and long-term fate of arsenate in natural environments. Spectroscopic experiments and theoretical calculations have demonstrated the potential importance of a variety of arsenate surface species on several iron and aluminum oxides. However, integration of the results of these studies with surface complexation models and extrapolation over wide ranges of conditions and for many oxides remains a challenge. In the present study, in situ X-ray and infrared spectroscopic and theoretical molecular evidence of arsenate (and the analogous phosphate) surface speciation are integrated with an extended triple layer model (ETLM) of surface complexation, which takes into account the electrostatic work associated with the ions and the water dipoles involved in inner-sphere surface complexation by the ligand exchange mechanism.Three reactions forming inner-sphere arsenate surface species
  相似文献   
78.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   
79.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   
80.
The El Niño of 1997–98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995–96 with the El Niño (EN) years in 1997–98. The model area extends from 4°S–16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid (Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号