首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   24篇
  国内免费   9篇
测绘学   14篇
大气科学   24篇
地球物理   165篇
地质学   212篇
海洋学   42篇
天文学   156篇
综合类   1篇
自然地理   70篇
  2022年   3篇
  2021年   11篇
  2020年   15篇
  2019年   14篇
  2018年   19篇
  2017年   11篇
  2016年   21篇
  2015年   20篇
  2014年   11篇
  2013年   35篇
  2012年   26篇
  2011年   25篇
  2010年   28篇
  2009年   30篇
  2008年   35篇
  2007年   17篇
  2006年   25篇
  2005年   26篇
  2004年   14篇
  2003年   19篇
  2002年   23篇
  2001年   12篇
  2000年   24篇
  1999年   7篇
  1998年   12篇
  1997年   10篇
  1996年   17篇
  1995年   14篇
  1994年   10篇
  1993年   13篇
  1992年   14篇
  1991年   3篇
  1990年   5篇
  1988年   3篇
  1987年   5篇
  1986年   7篇
  1985年   13篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
  1973年   5篇
  1970年   3篇
  1964年   2篇
排序方式: 共有684条查询结果,搜索用时 56 毫秒
101.
Although widely investigated in relation to acid mine drainage systems at pH > 1.0, we know little about the impact of sulfuric acid (H2SO4) on the geochemistry and mineralogy of clays at pH < 1.0 (including negative pH values). Thus, laboratory batch experiments were conducted on three mixed clay samples with different mass ratios of phyllosilicates (smectite, illite, and kaolinite) to investigate the impact of H2SO4 from pH 1.0 to −3.0 for exposure periods of 14, 90, 180, and 365 days. Si and Al K- and L2,3-edge X-ray absorption near edge structure (XANES) spectroscopy were employed on these samples to determine the chemical and structural changes that occur during acidic dissolution of phyllosilicates that cannot be distinguished using X-ray diffraction analyses. A series of silicate, phyllosilicate, and Al-bearing standard compounds were also studied to provide an explanation for the observed changes in the clay samples. The Si XANES results indicated the preferential dissolution of the phyllosilicates (pH ? 1.0, t ? 14 d), the persistence of quartz even at pH ? −3.0 and t ? 365 d, and the formation of an amorphous silica-like phase that was confined to the surface layer of the altered clay samples at pH ? 0.0 and t ? 90 d). Al XANES results demonstrated dissolution of Al-octahedral layers (pH ? 1.0, t ? 14 d), the persistence of four-fold relative to six-fold coordinated Al, and the precipitation of an Al-SO4-rich phase (pH ? −1.0, t ? 90 d). An existing conceptual model of phyllosilicate dissolution under extremely acidic conditions was modified to include the results of this study.  相似文献   
102.
Analysis of old erosion surfaces and estimates of exhumation from apatite fission track data can be used to infer late Neogene surface uplift of Britain, Greenland, Norway and Svalbard of 1–2 km. Subsidence and sedimentation in adjacent offshore basins can be found from interpretation of seismic and well log data. Various mechanisms for surface uplift have been proposed but the underlying cause remains unexplained. Since the multiple glaciations that took place during the late Neogene were a common factor, a possible glacially-forced tectonic mechanism to thicken the crust and produce surface uplift has been investigated. This could result from the relatively slow accumulation of ice that loads the crust as an ice sheet grows during a glacial period, followed by relatively rapid retreat and unloading around its periphery at the end. Unloading could create transient stresses that induce lateral flow in a ductile lower crust to thicken it onshore and produce surface uplift, with associated thinning beneath adjacent offshore basins, producing subsidence. Simple calculations show that the proposed mechanism is feasible and indicate that crustal thickening and surface uplift accumulated from a number of glacial cycles can account for the observed surface uplift, with an acceptable flow rate in the lower crust at the end of each cycle if the viscosity of ductile flow is sufficiently low.  相似文献   
103.
Diagenetic alteration is critical for the preservation of fossil cuticles of plant and animal origin and to the formation of kerogen. The process takes place over millions of years, but the stage at which it is initiated is not known. Laboratory decay experiments were carried out on shrimps, scorpions and cockroaches to monitor changes in the chitin–protein of the arthropod cuticle and associated lipids. The cockroach and scorpion exoskeleton remained largely unaltered morphologically, but the shrimp experienced rapid decomposition within a month, which progressed through the 44 week duration of the experiment as revealed using electron microscopy. Mass spectrometry and 13C NMR (nuclear magnetic resonance) spectroscopy revealed the association of an n-alkyl component with labile lipids, such as fatty acids with up to 24 carbon atoms, which were incorporated into the decaying macromolecule. The scorpion and cockroach cuticle did not reveal the incorporation of additional lipids, indicating that decay is important in initiating in situ lipid association. This experiment provides evidence that lipids can become associated with carbohydrate and proteinaceous macromolecules during the very early stages of decay, representing the first stage in the transformation process that contributes to the aliphatic rich composition ubiquitous in organic fossils and kerogen.  相似文献   
104.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   
105.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
106.
Results are presented from a study of various sunspot contrast parameters in broadband red (672.3 nm) Cartesian full-disk digital images taken at the San Fernando Observatory (SFO) over eight years, 1997 – 2004, of the twenty-third sunspot cycle. A subset of over 2700 red sunspots was analyzed and values of average and maximum sunspot contrast as well as maximum umbral contrast were compared to various sunspot parameters. Average and maximum sunspot contrasts were found to be significantly correlated with sunspot area (r s=− 0.623 and r s=− 0.714, respectively). Maximum umbral contrast was found to be significantly correlated with umbral area (r s=− 0.535). These results are in agreement with the works of numerous other authors. No significant dependence was detected between average contrast, maximum contrast, or maximum umbral contrast during the rising phase of the solar cycle (r s=0.024, r s=0.033, and r s=0.064, respectively). During the decay phase, no significant correlation was found between average contrast or maximum contrast and time (r s=− 0.057 and r s=0.009, respectively), with a weak dependence seen between maximum umbral contrast and cycle (r s=0.102).  相似文献   
107.
Geologic seepage of methane and light (C2-C5) alkanes was measured at the La Brea Tar Pits in Los Angeles. Samples were collected using flux chambers with stainless steel canisters and analyzed using gas chromatography. Average seepage rates from individual seepage sites were 970 ± 330 mg/h of methane, 14.0 ± 5.5 mg/h of ethane, 9.1 ± 3.7 mg/h of propane, 3.7 ± 1.6 mg/h of i-butane, 0.33 ± 0.16 mg/h of n-butane, 260 ± 120 μg/h of i-pentane, and 5.3 ± 1.9 μg/h of n-pentane, while maximum seepage rates exceeded 17 g/h of methane, 270 mg/h of ethane, 190 mg/h of propane, 95 mg/h of i-butane, 10 mg/h of n-butane, 7 mg/h of i-pentane, and 0.1 mg/h of n-pentane. These absolute fluxes have an additional unknown amount of error associated with them due to sampling methodology, and should be taken as the lower limit of emissions. Samples collected revealed generally dry gas, with high methane emissions relative to the light alkanes. Overall emissions from the tar pits were found to come not only from the active geologic seepage, but also from the outgassing of the standing asphalt at the site. Using the gas ratios, which are negligibly affected by errors introduced by sampling methodology, observed in this study, daily emissions of C2 – C5 alkanes from the La Brea area were estimated to be 4.7 ± 1.6 Mg, which represents 2–3 % of total emissions in the entire Los Angeles region.  相似文献   
108.
109.
110.
The conservative nature of chloride (Cl?) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin‐wide scale. The creation of Cl? isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin‐wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross‐formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl? within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号