首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6850篇
  免费   387篇
  国内免费   50篇
测绘学   177篇
大气科学   736篇
地球物理   1795篇
地质学   2706篇
海洋学   390篇
天文学   1108篇
综合类   47篇
自然地理   328篇
  2023年   32篇
  2022年   53篇
  2021年   127篇
  2020年   154篇
  2019年   114篇
  2018年   325篇
  2017年   328篇
  2016年   428篇
  2015年   307篇
  2014年   370篇
  2013年   524篇
  2012年   430篇
  2011年   391篇
  2010年   368篇
  2009年   378篇
  2008年   270篇
  2007年   220篇
  2006年   210篇
  2005年   164篇
  2004年   179篇
  2003年   145篇
  2002年   147篇
  2001年   118篇
  2000年   93篇
  1999年   82篇
  1998年   80篇
  1997年   107篇
  1996年   59篇
  1995年   72篇
  1994年   75篇
  1993年   49篇
  1992年   36篇
  1991年   42篇
  1990年   63篇
  1989年   34篇
  1988年   29篇
  1987年   46篇
  1986年   32篇
  1985年   43篇
  1984年   41篇
  1983年   34篇
  1982年   42篇
  1981年   46篇
  1980年   23篇
  1979年   33篇
  1978年   23篇
  1977年   29篇
  1975年   19篇
  1974年   18篇
  1973年   24篇
排序方式: 共有7287条查询结果,搜索用时 31 毫秒
91.
The purpose of this note is to give further information regarding the positions of some condensations around Carinae in 1963, an epoch not yet considered in the literature. The new information is unable to confirm the deceleration hypothesis of theeir motion.  相似文献   
92.
Summary A one dimensional analytical model of katabatic wind over the Antarctica has been developed. This parametric model is derived from the bulk two-layer model of Ball including the surface friction and taking into account the Earth's rotation and the geostrophic wind in the upper layer.This model is validated using the data set (70 soundings) collected during IAGO experiment at D47 (67°24S, 138°43E, altitude 1 564m), 110 km inland from the coast of Adélie Land.The parameteric model is then introduced into a GCM which is a spectral global version of the operational numerical weather prediction model used by the French weather service. The most significant effect of the parameterization is a 50 m increase of the geopotential height over the South Pole. The surface temperature at the South Pole increases (2°C) reducing the pole-midlatitude thermal gradient. The westerly circulation at 50° S is slowed down (4m/s at 850 hPa), and the surface pressure at the South Pole increases (4hPa). These results, consistent with an increase of katabatic winds, would however be improved by a better coupling between the parameterization and the GCM boundary layer.With 8 Figures  相似文献   
93.
C. Froeschlé  H. Rickman 《Icarus》1981,46(3):400-414
We present statistical distributions of Jovian perturbations on short-period comet orbits resulting from accurate numerical integrations. Our sample of 60, 000 cometary orbits with low inclinations and random orientations is characterized by perihelia between 0 and 7 AU and aphelia between 4 and 13 AU. The perturbations considered are those experienced because of Jupiter's gravitation per orbital revolution by the comets. Regularization and accurate step-length control in the numerical integration gives statistical results appreciably different from those computed by Rickman and Vaghi (1978). Their use of a crude method of integration led to erroneous results for close encounters. Strong asymmetries of the δ(1a) distributions, in particular for the extreme tails, are observed for perihelion- or aphelion-tangent orbits. These orbits are also shown to experience the strongest energy perturbations on the average. Some results concerning the perturbations of Tisserand parameters are indicated. The perturbation distributions for the angular elements are described and discussed. The role of the minimum distance from Jupiter as an indicator of perturbations is investigated.  相似文献   
94.
Part I gives a survey of the drastic revision of cosmic plasma physics which is precipitated by the exploration of the magnetosphere throughin situ measurements. The pseudo-plasma formalism, which until now has almost completely dominated theoretical astrophysics, must be replaced by an experimentally based approach involving the introduction of a number of neglected plasma phenomena, such as electric double layers, critical velocity, and pinch effect. The general belief that star light is the main ionizer is shown to be doubtful; hydromagnetic conversion of gravitational and kinetic energy may often be much more important.In Part II the revised plasma physics is applied to dark clouds and star formation. Magnetic fields do not necessarily counteract the contraction of a cloud; they may just as well pinch the cloud. Magnetic compression may be the main mechanism for forming interstellar clouds and keeping them together.Part III treats the formation of stars in a dusty cosmic plasma cloud. Star formation is due to an instability, but it is very unlikely that it has anything to do with the Jeans instability. A reasonable mechanism is that the sedimentation of dust (including solid bodies of different size) is triggering off a gravitationally assisted accretion. A stellesimal accretion analogous to the planetesimal accretion leads to the formation of a star surrounded by a very low density hollow in the cloud. Matter falling in from the cloud towards the star is the raw material for the formation of planets and satellites.The study of the evolution of a dark cloud leads to a scenario of planet formation which is reconcilable with the results obtained from studies based on solar system data. This means that the new approach to cosmical plasma physics discussed in Part I logically leads to a consistent picture of the evolution of dark clouds and the formation of solar systems.  相似文献   
95.
96.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   
97.
98.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
99.
In Savoy, the Grands-Moulins recent fault scarps, previously interpreted as seismic fault ruptures, are in fact part of a major Sackung (deep seated gravitational spreading) of the French Alps (9 km long). We mapped more than 60 sackung scarps, some of them reaching 1330 m long and 30 m high. These antislope scarps stop the active screes and offset relict Dryassic rock glaciers by 16 m. We present geomorphologic observations attesting for their gravitational origin. This Sackung is primarily due to glacial debuttressing, while seismic shaking could be a triggering mechanism. To cite this article: J.-C. Hippolyte et al., C. R. Geoscience 338 (2006).  相似文献   
100.
This study concerns a core collected in Brejo do Espinho's lagoon from Cabo Frio littoral (Brazil) submitted to dry influence of local upwelling controlled by north-east trade winds from the South Atlantic and particularly strengthened during El Niño events. Diatoms study supported by sedimentological and isotopic analyses shows dry phases infrequent before 4000 yr, a highly variable climatic phase between 3600 and 2900 yr and from 2400 yr onward a dryness enhancement. To cite this article: B. Laslandes et al., C. R. Geoscience 338 (2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号