首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9055篇
  免费   287篇
  国内免费   133篇
测绘学   169篇
大气科学   731篇
地球物理   2122篇
地质学   3143篇
海洋学   873篇
天文学   1343篇
综合类   40篇
自然地理   1054篇
  2022年   34篇
  2021年   125篇
  2020年   161篇
  2019年   168篇
  2018年   205篇
  2017年   211篇
  2016年   249篇
  2015年   209篇
  2014年   285篇
  2013年   488篇
  2012年   299篇
  2011年   429篇
  2010年   401篇
  2009年   503篇
  2008年   422篇
  2007年   426篇
  2006年   369篇
  2005年   308篇
  2004年   297篇
  2003年   309篇
  2002年   255篇
  2001年   213篇
  2000年   229篇
  1999年   173篇
  1998年   159篇
  1997年   140篇
  1996年   148篇
  1995年   137篇
  1994年   130篇
  1993年   110篇
  1992年   104篇
  1991年   70篇
  1990年   102篇
  1989年   80篇
  1988年   88篇
  1987年   103篇
  1986年   89篇
  1985年   113篇
  1984年   136篇
  1983年   127篇
  1982年   108篇
  1981年   82篇
  1980年   57篇
  1979年   71篇
  1978年   68篇
  1977年   67篇
  1976年   62篇
  1975年   70篇
  1974年   59篇
  1973年   72篇
排序方式: 共有9475条查询结果,搜索用时 15 毫秒
91.
The capability of accurately predicting mineralogical brittleness index(BI)from basic suites of well logs is desir-able as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation(Texas).This transparent open box(TOB)algorithm matches data records by calculating the sum of squared errors be-tween their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error(RMSE)between calculated and predicted(BI).The prediction accuracy achieved by TOB using just five well logs(Gr,pb,Ns,Rs,Dt)to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R2~0.790.At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE~0.008 and R2~0.995.Adding a stratigraphic height index as an additional(sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R2~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measure-ments but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.  相似文献   
92.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   
93.
Natural Resources Research - A Bakken formation learning network is established based upon type well-log data (seven petrophysical variables) and a discrete stratigraphic index (Str) comprising...  相似文献   
94.
This article describes two spatially explicit models created to allow experimentation with different societal responses to the COVID‐19 pandemic. We outline the work to date on modeling spatially explicit infective diseases and show that there are gaps that remain important to fill. We demonstrate how geographical regions, rather than a single, national approach, are likely to lead to better outcomes for the population. We provide a full account of how our models function, and how they can be used to explore many different aspects of contagion, including: experimenting with different lockdown measures, with connectivity between places, with the tracing of disease clusters, and the use of improved contact tracing and isolation. We provide comprehensive results showing the use of these models in given scenarios, and conclude that explicitly regionalized models for mitigation provide significant advantages over a “one‐size‐fits‐all” approach. We have made our models, and their data, publicly available for others to use in their own locales, with the hope of providing the tools needed for geographers to have a voice during this difficult time.  相似文献   
95.
96.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
97.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   
98.
Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb geochronology of shocked zircon grains in a vesicular‐fluidal impact melt rock from the ≥54 km Charlevoix impact structure, Québec, Canada, suggests an Ordovician to Silurian age of 450 ± 20 Ma for the impact. This age is anchored by concordant U–Pb results of ~450 Ma for a U‐rich, cryptocrystalline zircon grain in the melt rock, interpreted as a recrystallized metamict zircon crystal; the U–Th–Pb system of the metamict grain was seemingly chronometrically reset by the Charlevoix impact, but withstood later tectonometamorphic events. The new zircon age for Charlevoix is in agreement with a stratigraphically constrained Late Ordovician maximum age of ~453 Ma and corroborates earlier suggestions that the impact occurred most likely in the Ordovician, and not ~100 Myr later, as indicated by previous K/Ar and 40Ar/39Ar geochronologic results. The latter may reflect postimpact thermal overprint of impactites during the Salinian (Late Silurian to Early Devonian) and/or Acadian (Late Devonian) orogenies. U–Pb geochronology of zircon crystals in anorthosite exposed in the central uplift of the impact structure yielded a Grenvillian crystallization age of 1062 ± 11 Ma. The preferred Ordovician age for the Charlevoix impact structure, which is partially overthrusted by the Appalachian front, suggests the impact occurred during a phase of Taconian tectonism and an episode of enhanced asteroid bombardment of the Earth. Our results, moreover, demonstrate that (recrystallized) metamict zircon grains may be of particular interest in impact geochronology.  相似文献   
99.
Natural Resources Research - Machine learning (ML) schemes can enhance success in geochemical prospectivity mapping. This study has examined the effectiveness of several feature extraction or...  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号