首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   9篇
  国内免费   6篇
测绘学   10篇
大气科学   11篇
地球物理   46篇
地质学   117篇
海洋学   20篇
天文学   48篇
自然地理   22篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   11篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   12篇
  2012年   9篇
  2011年   24篇
  2010年   18篇
  2009年   14篇
  2008年   21篇
  2007年   12篇
  2006年   17篇
  2005年   13篇
  2004年   10篇
  2003年   8篇
  2002年   14篇
  2001年   10篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
271.
Sinking cities     
When water supplies are abstracted from alluvial sands, interbedded clays compact and cause ground subsidence. Entire cities are being gently lowered, with serious consequences for those on low coastal sites.  相似文献   
272.
Depth profiles of solute chemistry and sulfate isotopic compositions are presented for groundwater and pore water in a sequence of Quaternary glacial outwash sediments. Sand units show evidence for hydraulic connection to the surface and thus modern sources of solutes. Finer‐grained sediments show a general pattern of increasing solute concentrations with depth, with sulfate derived from ancient rainwater and pyrite oxidation in the soil/drift. In these sediments sulfate has undergone bacterial sulfate reduction (BSR) to produce biogenic sulfide. In clay sediments, with d10 ≤ 1·6 µm, high concentrations of sulfate and acetate now co‐exist, implying that BSR is inhibited. The correlation with smaller sediment grain size indicates that this is due to pore size exclusion of the sulfate reducing bacteria. Mechanical restriction of microbial function thus provides a fundamental limitation on microbial respiration in buried clay‐rich sediments, which acts as a control on the chemical evolution of their pore waters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
273.
Identification of the source of CO2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO2 in the subsurface. We present the results of 57 noble gas determinations in CO2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John’s Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO2/3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO2 can be stored within the subsurface on a millennia timescale.The manner and extent of contact of the CO2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO2. We show that coherent fractionation of groundwater 20Ne/36Ar with crustal radiogenic noble gases (4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO2/water phase partitioning. The CO2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO2 filling direction. This is seen in the Bravo Dome and St. John’s Dome fields. Stage 2: The noble gases re-dissolve into any available gas stripped groundwater. This is modeled as a Rayleigh distillation process and enables us to quantify for each sample: (1) the volume of groundwater originally ‘stripped’ on reservoir filling; and (2) the volume of groundwater involved in subsequent interaction. The original water volume that is gas stripped varies from as low as 0.0005 cm3 groundwater/cm3 gas (STP) in one Bravo Dome sample, to 2.56 cm3 groundwater/cm3 gas (STP) in a St. John’s Dome sample. Subsequent gas/groundwater equilibration varies within all fields, each showing a similar range, from zero to ∼100 cm3 water/cm3 gas (at reservoir pressure and temperature).  相似文献   
274.
This paper describes a new 3‐D forward numerical model (CARBONATE 3D) that simulates the stratigraphic and sedimentological development of carbonate platforms and mixed carbonate–siliciclastic shelves by simulating the following sedimentary processes: (1) Carbonate shallow, open‐marine production, dependent on water depth, restriction and sediment input; (2) Carbonate shallow, restricted‐marine production, dependent on water restriction; (3) Pelagic sediment production and deposition; (4) Coarse and fine siliciclastic input; (5) Erosion, transport and redeposition of sediment, dependent on currents, slope, depth and restriction as well as sediment grain‐size and composition; (6) Dissolution of subaerially exposed carbonate. In this paper the model is used to investigate the controlling mechanisms on the sequence stratigraphy of isolated carbonate platforms and atolls and to predict distinctive architectural signatures from different drowning mechanisms. Investigation of the mechanisms controlling atoll strata shows that although relative sea‐level is the major control, antecedent topography, environmental setting and early diagenesis have profound influence on what stratigraphic geometries and facies develop. Hence care must be taken if sea‐level curves are interpreted from real stratigraphies. Atoll drowning by fast sea‐level rise, by lowered production and by repeated exposure and fast subsequent sea‐level rises are investigated and different stratigraphic signatures for the respective mechanisms predicted. A fast relative sea‐level rise results in a bucket‐shaped morphology developed prior to drowning and a sharp transition from the platform margin facies to a pelagic cover. Drowning caused by lowered platform margin production is predicted to result in the development of a dome‐shaped, shallow‐water shoal over the whole platform top prior to drowning. Fourth order amplitudes of several tens of metres, typical of ‘icehouse’ settings, cause atoll drowning at subsidence rates where atolls subject to fourth order amplitude of only a few metres, typical of ‘greenhouse’ settings, can keep up with the rising sea‐level. In the resultant strata, vertical facies belts are less well developed but horizontally extensive facies bands are more prominent. High fourth order amplitudes (up to 80 m) without sufficient third order scale subsidence will not lead to drowning, however, as the platform can recover in each fourth order lowstand. These results suggest that atolls might be easier to drown in ‘icehouse’ rather than in ‘greenhouse’ conditions but only in situations with suitably high rates of longer‐term relative sea‐level rise or sufficient lag times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号