首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   15篇
  国内免费   6篇
测绘学   10篇
大气科学   11篇
地球物理   46篇
地质学   117篇
海洋学   20篇
天文学   48篇
自然地理   22篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   11篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   12篇
  2012年   9篇
  2011年   24篇
  2010年   18篇
  2009年   14篇
  2008年   21篇
  2007年   12篇
  2006年   17篇
  2005年   13篇
  2004年   10篇
  2003年   8篇
  2002年   14篇
  2001年   10篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
101.
A new uncertainty quantification framework is adopted for carbon sequestration to evaluate the effect of spatial heterogeneity of reservoir permeability on CO2 migration. Sequential Gaussian simulation is used to generate multiple realizations of permeability fields with various spatial statistical attributes. In order to deal with the computational difficulties, the following ideas/approaches are integrated. First, different efficient sampling approaches (probabilistic collocation, quasi-Monte Carlo, and adaptive sampling) are used to reduce the number of forward calculations, explore effectively the parameter space, and quantify the input uncertainty. Second, a scalable numerical simulator, extreme-scale Subsurface Transport Over Multiple Phases, is adopted as the forward modeling simulator for CO2 migration. The framework has the capability to quantify input uncertainty, generate exploratory samples effectively, perform scalable numerical simulations, visualize output uncertainty, and evaluate input-output relationships. The framework is demonstrated with a given CO2 injection scenario in heterogeneous sandstone reservoirs. Results show that geostatistical parameters for permeability have different impacts on CO2 plume radius: the mean parameter has positive effects at the top layers, but affects the bottom layers negatively. The variance generally has a positive effect on the plume radius at all layers, particularly at middle layers, where the transport of CO2 is highly influenced by the subsurface heterogeneity structure. The anisotropy ratio has weak impacts on the plume radius, but affects the shape of the CO2 plume.  相似文献   
102.
Abstract– The solid 2–10 μm samples of comet Wild 2 provide a limited but direct view of the solar nebula solids that accreted to form Jupiter family comets. The samples collected by the Stardust mission are dominated by high‐temperature materials that are closely analogous to meteoritic components. These materials include chondrule and CAI‐like fragments. Five presolar grains have been discovered, but it is clear that isotopically anomalous presolar grains are only a minor fraction of the comet. Although uncertain, the presolar grain content is perhaps higher than found in chondrites and most interplanetary dust particles. It appears that the majority of the analyzed Wild 2 solids were produced in high‐temperature “rock forming” environments, and they were then transported past the orbit of Neptune, where they accreted along with ice and organic components to form comet Wild 2. We hypothesize that Wild 2 rocky components are a sample of a ubiquitously distributed flow of nebular solids that was accreted by all bodies including planets and meteorite parent bodies. A primary difference between asteroids and the rocky content of comets is that comets are dominated by this widely distributed component. Asteroids contain this component, but are dominated by locally made materials that give chondrite groups their distinctive properties. Because of the large radial mixing in this scenario, it seems likely that most comets contain a similar mix of rocky materials. If this hypothesis is correct, then properties such as oxygen isotopes and minor element abundances in olivine, should have a wider dispersion than in any chondrite group, and this may be a characteristic property of primitive outer solar system bodies made from widely transported components.  相似文献   
103.
An attempt has been made to use synthetic aperture radar (SAR) data for detection and monitoring of offshore oil seeps in the eastern offshore areas of the Krishna–Godavari Basin, which has been supplemented and correlated with collateral free-air gravity and seismic data. Images of the study area obtained from ENVISAT ASAR image mode were processed and analysed in detail. A number of natural oil seepages were identified and distinguished from pollution and biogenic slicks. These were subsequently studied using different parameters to assign various degrees of confidence. The repetitiveness of the identified seepages was studied and a total of five areas of seep repetitions had been recognized in the study area. The seeps that are repeated in images of different dates are more likely to be of natural origin than others. Simulation and modelling of a particular oil slick arising has been attempted over the Krishna–Godavari offshore using MIKE 21 software.  相似文献   
104.
The Macraes orogenic gold deposit is hosted by a graphitic micaceous schist containing auriferous porphyroblastic sulphides. The host rock resembles zones of unmineralised micaceous graphitic pyritic schists, derived from argillaceous protoliths, that occur locally in background pelitic Otago Schist metasediments. This study was aimed at determining the relationship between these similar rock types, and whether the relationship had implications for ore formation. Argillites in the protolith turbidites of the Otago Schist metamorphic belt contain minor amounts of detrital organic matter (<0.1 wt.%) and diagenetic pyrite (<0.3 wt.% S). The detrital organic carbon was mobilised by metamorphic–hydrothermal fluids and redeposited as graphite in low-grade metaturbidites (pumpellyite–actinolite and greenschist facies). This carbon mobility occurred through >50 million years of evolution of the metamorphic belt, from development of sheared argillite in the Jurassic, to postmetamorphic ductile extension in the Cretaceous. Introduced graphite is structurally controlled and occurs with metamorphic muscovite and chlorite as veins and slicken-sided shears, with some veins having >50% noncarbonate carbon. Graphitic foliation seams in low-grade micaceous schist and metamorphic quartz veins contain equant graphite porphyroblasts up to 2 mm across that are composed of crystallographically homogeneous graphite crystals. Graphite reflectance is anisotropic and ranges from ~1% to ~8% (green light). Texturally similar porphyroblastic pyrite has grown in micaceous schist (up to 10 wt.% S), metamorphic quartz veins and associated muscovite-rich shears. These pyritic schists are weakly enriched in arsenic (up to 60 ppm). The low-grade metamorphic mobility and concentration of graphite in micaceous schists is interpreted to be a precursor process that structurally and geochemically prepared parts of the Otago Schist belt for later (more restricted) gold mineralisation. Economic amounts of gold, and associated arsenic, were subsequently introduced to carbonaceous sulphidic schists in the Macraes gold deposit by a separate metamorphic fluid derived from high-grade metaturbidites. Fluid flow at all stages in these processes occurred at metamorphic rates (mm/year), and fluids were broadly in equilibrium with the rocks through which they were passing.  相似文献   
105.
Brief Introduction to Papers on Pterosaurs  相似文献   
106.
This paper presents a model of facies distribution within a set of early Cretaceous, deep‐lacustrine, partially confined turbidite fans (Sea Lion Fan, Sea Lion North Fan and Otter Fan) in the North Falkland Basin, South Atlantic. As a whole, ancient deep‐lacustrine turbidite systems are under‐represented in the literature when compared with those documented in marine basins. Lacustrine turbidite systems can form extensive, good quality hydrocarbon reservoirs, making the understanding of such systems crucial to exploration within lacustrine basins. An integrated analysis of seismic cross‐sections, seismic amplitude extraction maps and 455 m of core has enabled the identification of a series of turbidite fans. The deposits of these fans have been separated into lobe axis, lobe fringe and lobe distal fringe settings. Seismic architectures, observed in the seismic amplitude extraction maps, are interpreted to represent geologically associated heterogeneities, including: feeder systems, terminal mouth lobes, flow deflection, sinuous lobe axis deposits, flow constriction and stranded lobe fringe areas. When found in combination, these architectures suggest ‘partial confinement’ of a system, something that appears to be a key feature in the lacustrine turbidite setting of the North Falkland Basin. Partial confinement of a system occurs when depositionally generated topography controls the flow‐pathway and deposition of subsequent turbidite fan deposits. The term ‘partial confinement’ provides an expression for categorising a system whose depositional boundaries are unconfined by the margins of the basin, yet exhibit evidence of internal confinement, primarily controlled by depositional topography. Understanding the controls that dictate partial confinement; and the resultant distribution of sand‐prone facies within deep‐lacustrine turbidite fans, is important, particularly considering their recent rise as hydrocarbon reservoirs in rift and failed‐rift settings.  相似文献   
107.
The Staphylinine group of rove beetle subfamilies is a significant animal radiation, and one subordinate monophyletic clade – the ‘Euaesthetine subgroup’ – includes around 3000 species in subfamilies Euaesthetinae and Steninae and has a fossil record dating to the Early Cretaceous. Detailed morphological study of a new well-preserved Cretaceous Burmese amber fossil revealed strong evidence consistent with its taxonomic placement in the euaesthetine genus Octavius. We thus describe Octavius electrospinosus sp. nov., the first Cretaceous record of the genus and of the tribe Euaesthetini. Previously, the oldest records of Octavius and Euaesthetini were from the Eocene (Baltic amber) and discovery of O. electrospinosus sp. nov. therefore nearly doubles the minimum lineage age of Octavius, increasing it by 50 million years. We also briefly review the known Euaesthetine subgroup fossil record and tabulate summary data for all previously described fossils. All are placed in extant genera, and have visible diagnostic generic-level characters including some putative synapomorphies as judged by recent phylogenetic work. Including O. electrospinosus sp. nov., there are now four known Cretaceous species, all of which belong to either Octavius, Nordenskioldia, or Stenus. To explain the long-term morphological stasis in this group of rove beetles, we suggest that the continuous presence of mesic habitats may have buffered these lineages from strong selection for morphological change. Considering the fossils along with phylogenetic hypotheses we suggest the Euaesthetine subgroup originated in the Late Jurassic– Early Cretaceous and the Staphylinine group in the Early Jurassic. We emphasize the derived status of Cretaceous fossils in assessing possible divergence times and the significance of the pre-Cretaceous taphonomic bias for restricting more robust estimates. Further detailed morphological study of available fossils in a phylogenetic framework is badly needed to clarify the phylogenetic positions of these taxa.  相似文献   
108.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   
109.
Processing of arsenopyrite ore took place at Blackwater Au mine, New Zealand, between 1908 and 1951 and no rehabilitation was undertaken after mine closure. High As concentrations in solid processing residues (up to 40 wt% As) are due to secondary As minerals. Site pH regimes vary from 4.1 to circum-neutral. Originally, all processed As was present as arsenolite (arsenic trioxide polymorph, AsIII), a by-product of arsenopyrite roasting. Near the roaster, scorodite precipitated as a result of the high dissolved As concentration during arsenolite dissolution. The formation of scorodite has two major consequences. Firstly, the scorodite precipitate cements the ground in the vicinity of the roaster area, thereby creating an impermeable surface crust (up to 30 wt% As) and encapsulating weathered arsenolite grains within the cement. Secondly, formation of scorodite temporarily immobilizes some of the dissolved As that is generated during nearby arsenolite dissolution. Where all the available arsenolite has dissolved, scorodite becomes soluble, and the dissolved As concentrations are controlled by scorodite solubility, which is at least two orders of magnitudes lower than arsenolite solubility. Downstream Eh conditions fall below the AsV/AsIII boundary, so that scorodite does not precipitate and dissolved As concentrations are controlled by arsenolite solubility. Dissolved As reaches up to 52 mg/L in places, and exceeds the current WHO drinking water guideline of 0.01 mg/L by 5200 times. This study shows that dissolved As concentrations in discharge waters at historic mine sites are dependent on the processing technology and associated mineralogy.  相似文献   
110.
Twenty-five diamonds recovered from 21 diamondiferous peridotitic micro-xenoliths from the A154 South and North kimberlite pipes at Diavik (Slave Craton) match the general peridotitic diamond production at this mine with respect to colour, carbon isotopic composition, and nitrogen concentrations and aggregation states. Based on garnet compositions, the majority of the diamondiferous microxenoliths is lherzolitic (G9) in paragenesis, in stark contrast to a predominantly harzburgitic (G10) inclusion paragenesis for the general diamond production. For garnet inclusions in diamonds from A154 South, the lherzolitic paragenesis, compared to the harzburgitic paragenesis, is distinctly lower in Cr content. For microxenolith garnets, however, Cr contents for garnets of both the parageneses are similar and match those of the harzburgitic inclusion garnets. Assuming that the microxenolith diamonds reflect a sample of the general diamond population, the abundant Cr-rich lherzolitic garnets formed via metasomatic overprinting of original harzburgitic diamond sources subsequent to diamond formation, conversion of original harzburgitic diamond sources occurred in the course of metasomatic overprint re-fertilization. Metasomatic overprinting after diamond formation is supported by the finding of a highly magnesian olivine inclusion (Fo95) in a microxenolith diamond that clearly formed in a much more depleted environment than indicated by the composition of its microxenolith host. Chondrite normalized REE patterns of microxenolith garnets are predominantly sinusoidal, similar to observations for inclusion garnets. Sinusoidal REEN patterns are interpreted to indicate a relatively mild metasomatic overprint through a highly fractionated (very high LREE/HREE) fluid. The predominance of such patterns may explain why the proposed metasomatic conversion of harzburgite to lherzolite appears to have had no destructive effect on diamond content. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号