首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   9篇
  国内免费   4篇
测绘学   10篇
大气科学   11篇
地球物理   45篇
地质学   85篇
海洋学   19篇
天文学   41篇
自然地理   17篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   10篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   7篇
  2011年   22篇
  2010年   17篇
  2009年   10篇
  2008年   20篇
  2007年   10篇
  2006年   16篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
  1950年   1篇
排序方式: 共有228条查询结果,搜索用时 0 毫秒
21.
22.
Crossing structures are an effective method for mitigating habitat fragmentation and reducing wildlife‐vehicle collisions, although high construction costs limit the number that can be implemented in practice. Therefore, optimizing the placement of crossing structures in road networks is suggested as a strategic conservation planning method. This research explores two approaches for using the maximal covering location problem (MCLP) to determine optimal sites to install new wildlife crossing structures. The first approach is based on records of traffic mortality, while the second uses animal tracking data for the species of interest. The objective of the first is to cover the maximum number of collision sites, given a specified number of proposed structures to build, while the second covers as many animal tracking locations as possible under a similar scenario. These two approaches were used to locate potential wildlife crossing structures for endangered Florida panthers (Puma concolor coryi) in Collier, Lee, and Hendry Counties, Florida, a population whose survival is threatened by excessive traffic mortality. Historical traffic mortality records and an extensive radio‐tracking dataset were used in the analyses. Although the two approaches largely select different sites for crossing structures, both models highlight key locations in the landscape where these structures can remedy traffic mortality and habitat fragmentation. These applications demonstrate how the MCLP can serve as a useful conservation planning tool when traffic mortality or animal tracking data are available to researchers.  相似文献   
23.
24.
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.  相似文献   
25.
Excavations at Bonneville Estates Rockshelter, Nevada recovered rodent remains from stratified deposits spanning the past ca. 12,500 14C yr BP (14,800 cal yr BP). Specimens from horizons dating to the late Pleistocene and early Holocene include species adapted to montane and moist and cool habitats, including yellow-bellied marmot (Marmota flaviventris) and bushy-tailed woodrat (Neotoma cinerea). Shortly after 9000 14C BP (10,200 cal yr BP) these mammals became locally extinct, or nearly so, taxonomic diversity declined, and the region became dominated by desert woodrats (Neotoma lepida) and other species well-adapted to xeric, low-elevation settings. The timing and nature of changes in the Bonneville Estates rodent fauna are similar to records reported from nearby Homestead and Camels Back caves and provide corroborative data on terminal Pleistocene–early Holocene environments and mammalian responses to middle Holocene desertification. Moreover, the presence of northern pocket gopher (Thomomys talpoides) at Bonneville Estates adds to a sparse regional record for that species and, similar to Homestead Cave, it appears that the ca. 9500 14C yr BP (10,800 cal yr BP) replacement of the northern pocket gopher by Botta's pocket gopher in the Great Salt Lake Desert vicinity was also in response to climate change.  相似文献   
26.
Soil erosion around defective underground pipes can cause ground collapses and sinkholes in urban areas. Most of these soil erosion events are caused by fluidization of the surrounding soil with subsequent washing into defective sewer pipes. In this study, this soil erosion process is simplified as the gradual washout of sand particles mixed with water through an orifice. The discrete element method is used to simulate the large deformation behavior of the sand particles, and the Darcy fluid model is coupled with this approach to simulate fluid flow through porous sand media. A coupled 3D discrete element model is developed and implemented based on this scheme. To simulate previous experiments using this coupled model considering the current computing capacity, we incorporated a ‘supply layer’ to study the continuous erosion process. The coupled model can predict the erosion flow rates of sand and water and the shape of erosion void. Thus, the model can be used as an effective and efficient tool to investigate the soil erosion process around defective pipes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
27.
The origin of the hypersaline fluids (magmatic or basinal brine?), associated with iron oxide (Cu–U–Au–REE) deposits, is controversial. We report the first chlorine and strontium isotope data combined with Cl/Br ratios of fluid inclusions from selected iron oxide–copper–gold (IOCG) deposits (Candelaria, Raúl–Condestable, Sossego), a deposit considered to represent a magmatic end member of the IOCG class of deposit (Gameleira), and a magnetite–apatite deposit (El Romeral) from South America. Our data indicate mixing of a high δ 37Cl magmatic fluid with near 0‰ δ 37Cl basinal brines in the Candelaria, Raúl–Condestable, and Sossego IOCG deposits and leaching of a few weight percent of evaporites by magmatic-hydrothermal (?) fluids at Gameleira and El Romeral. The Sr isotopic composition of the inclusion fluids of Candelaria, Raúl–Condestable, and El Romeral confirms the presence of a non-magmatic fluid component in these deposits. The heavy chlorine isotope signatures of fluids from the IOCG deposits (Candelaria, Raúl–Condestable, Sossego), reflecting the magmatic-hydrothermal component of these fluids, contrast with the near 0‰ δ 37Cl values of porphyry copper fluids known from the literature. The heavy chlorine isotope compositions of fluids of the investigated IOCG deposits may indicate a prevailing mantle Cl component in contrast to porphyry copper fluids, an argument also supported by Os isotopes, or could result from differential Cl isotope fractionation processes (e.g. phase separation) in fluids of IOCG and porphyry Cu deposits.  相似文献   
28.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   
29.
Dolomitization of a carbonate platform can occur at different times and in different diagenetic environments, from synsedimentary to deep burial settings. Numerical simulations are valuable tools to test and select the model that, among different hypotheses compatible with field and geochemical data, best honour mass balance, kinetic and thermodynamic constraints. Moreover, the simulation can predict the distribution of the dolomitized bodies in the subsurface and evaluate porosity changes; valuable information for the oil industry. This study is the first attempt to reproduce and investigate the compaction dolomitization model. The diagenetic study of the Jurassic carbonate basin and palaeohigh system of the Po Plain indicates that the carbonates of the palaeohighs were dolomitized by basin compaction fluids. The main goal of the simulations is to evaluate the origin and evolution of the dolomitizing fluids and to provide insights regarding the distribution of the potential reservoir‐dolomitized bodies in the Po Plain. The modelling process is subdivided into two steps: basin modelling and reactive transport modelling. The SEBE3 basin simulator (Eni proprietary) was used to create a three‐dimensional model of the compacting system. The results include compaction fluid flow rate from the basin to the palaeohigh, compaction duration and a determination of the total amount of fluid introduced into the palaeohigh. These data are then used to perform reactive transport modelling with the TOUGHREACT code. Sensitivities on dolomite kinetic parameters suggest that dolomitization was an efficient process even at low temperatures, with differences mainly related to the dynamics of the process. Fluid composition is one of the main constraints, the sea water derived compaction fluid is proven to be efficient for dolomitization due to its relatively high Mg content. Simulations also confirmed that permeability is the most important factor influencing fluid flow and, consequently, the dolomite distribution in the formation. Permeable fractured zones have a strong influence, diverting the dolomitizing fluids from their normal path towards overlying or lateral zones. Moreover, the simulations showed that, after dolomite replacement is complete, the dolomitizing fluids can precipitate dolomite cement, causing over‐dolomitization, with related localized plugging effects in the zone of influx. Mass balance calculations indicate that in the dolomitization compaction model, the amount of compaction water fluxed from the basin to the carbonate is the main constraint on dolomitization efficiency. This observation implies that the ratio between the volume of the basin undergoing compaction and the volume of the palaeohigh is a limiting factor on the final size of the dolomitized bodies. An isolated palaeohigh could be an ideal site for pervasive replacement dolomitization due to the large volume of compaction fluids available compared with the carbonate rock volume. In the case of large platforms, the more permeable margin lithofacies are the most likely sites for compaction model dolomitization. The combined use of a basin simulator and reactive transport modelling has proved to be a successful method to verify model reliability and it provides insights into the volumetric distribution of diagenetic products.  相似文献   
30.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号