全文获取类型
收费全文 | 553篇 |
免费 | 19篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 17篇 |
大气科学 | 41篇 |
地球物理 | 143篇 |
地质学 | 205篇 |
海洋学 | 39篇 |
天文学 | 91篇 |
自然地理 | 40篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 3篇 |
2019年 | 9篇 |
2018年 | 13篇 |
2017年 | 15篇 |
2016年 | 11篇 |
2015年 | 9篇 |
2014年 | 18篇 |
2013年 | 28篇 |
2012年 | 18篇 |
2011年 | 29篇 |
2010年 | 41篇 |
2009年 | 21篇 |
2008年 | 35篇 |
2007年 | 19篇 |
2006年 | 31篇 |
2005年 | 23篇 |
2004年 | 26篇 |
2003年 | 16篇 |
2002年 | 21篇 |
2001年 | 13篇 |
2000年 | 15篇 |
1999年 | 13篇 |
1998年 | 12篇 |
1997年 | 10篇 |
1996年 | 10篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1993年 | 6篇 |
1992年 | 3篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 6篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 5篇 |
1981年 | 2篇 |
1980年 | 5篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1974年 | 5篇 |
1971年 | 2篇 |
排序方式: 共有576条查询结果,搜索用时 15 毫秒
161.
Laureline Scherler Bastien Mennecart Florent Hiard Damien Becker 《Swiss Journal of Geoscience》2013,106(2):349-369
The biostratigraphy and diversity patterns of terrestrial, hoofed mammals help to understand the transition between the Palaeogene and the Neogene in Western Europe. Three phases are highlighted: (1) the beginning of the Arvernian (Late Oligocene, MP25-27) was characterised by a “stable” faunal composition including the last occurrences of taxa inherited from the Grande Coupure and of newly emerged ones; (2) the latest Arvernian (Late Oligocene, MP28-30) and the Agenian (Early Miocene, MN1-2) saw gradual immigrations leading to progressive replacement of the Arvernian, hoofed mammals towards the establishment of the “classical” Agenian fauna; (3) the beginning of the Orleanian (Early Miocene, MN3-4) coincided with the African-Eurasian faunal interchanges of the Proboscidean Datum Events and led to complete renewal of the Agenian taxa and total disappearance of the last Oligocene survivors. Faunal balances, poly-cohorts and particularly cluster analyses emphasise these three periods and define a temporally well-framed Oligocene–Miocene transition between MP28 and MN2. This transition started in MP28 with a major immigration event, linked to the arrival in Europe of new ungulate taxa, notably a stem group of “Eupecora” and the small anthracothere Microbunodon. Due to its high significance in the reorganisation of European, hoofed-mammal communities, we propose to name it the Microbunodon Event. This first step was followed by a phase of extinctions (MP29-30) and later by a phase of regional speciation and diversification (MN1-2). The Oligocene–Miocene faunal transition ended right before the two-phased turnover linked to the Proboscidean Datum Events (MN3-4). Locomotion types of rhinocerotids and ruminants provide new data on the evolution of environments during the Oligocene–Miocene transition and help understand the factors controlling these different phases. Indeed, it appears that the faunal turnovers were primarily directed by migrations, whereas the Agenian transitional phase mainly witnessed speciations. 相似文献
162.
The igneous rocks of the Kialineq centre on the coast of East Greenland at 67°N include a number of quartz syenite and granite plutons intruded 35my BP. These are subvolcanic bodies emplaced by cauldron subsidence and with ring-dike and bell-jar form. Associated with the major intrusions is an extensive acid-basic mixed magma complex. Two-liquid structures, chilling of basic against acid magma, pillows of basic in acid, and net-veining of basic by acid magma, are superbly displayed. The basic magma was of a transitional or alkaline type and underwent varying degrees of fractionation in a regime of repeated intrusions and diverse chambers. Heterogeneous hybrid rocks intermediate between basalt and quartz syenite are strongly developed and were formed by repeated mechanical mixing of contrasting magmas. The energy for this mixing probably came in the main from cauldron-block subsidence. The quartz syenite magma, which itself fractionated towards granite, has initial 87Sr/86Sr ratios the same as the basic magma and is itself believed to be a fractionation product of alkali basalt magma. 相似文献
163.
164.
Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation (LPO) 总被引:1,自引:0,他引:1
We present microstructural data and lattice preferred orientations (LPOs) of omphacites from a suite of eclogites, from the Adula/Cima Lunga nappe (Central Alps). Our work shows a surprisingly strong correlation between the measured LPO and the ordering state of cations in omphacite. Estimates of deformation temperature from metamorphic petrology, together with measured omphacite compositions and LPOs, determine the field (ordering state), on the omphacite phase diagram, into which each sample falls. LPOs dominated by L-type and S-type signatures are developed in samples that fall in the P2/n field (ordered structure) and C2/c field (disordered structure), respectively.Dislocations with b=1/2−110 or b=[001] are observed in the transmission electron microscope (TEM) in all samples. The former change from a perfect dislocation in the C2/c structure to a partial in P2/n. Any movement of a partial dislocation requires the formation or growth of a stacking fault. Furthermore, in order to pass an obstacle a partial dislocation has to constrict to a unit dislocation. The energy to form a constriction is high in omphacite due to the large separation width. Thus, the activity of the b=1/2−110 dislocation is hindered in the P2/n structure relative to the C2/c structure, which change the balance between the two and might give rise to the different LPOs. 相似文献
165.
166.
Brian Levine Lucy Burkitt Dave Horne Chris Tanner James Sukias Leo Condron John Paterson 《水文研究》2021,35(8):e14309
Erosion leading to sedimentation in surface water may disrupt aquatic habitats and deliver sediment-bound nutrients that contribute to eutrophication. Land use changes causing loss of native vegetation have accelerated already naturally high erosion rates in New Zealand and increased sedimentation in streams and lakes. Sediment-bound phosphorus (P) makes up 71–79% of the 17–19 t P y−1 delivered from anthropogenic sources to Lake Rotorua in New Zealand. Detainment bunds (DBs) were first implemented in the Lake Rotorua catchment in 2010 as a strategy to address P losses from pastoral agriculture. The bunds are 1.5–2 m high earthen stormwater retention structures constructed across the flow path of targeted low-order ephemeral streams with the purpose of temporarily ponding runoff on productive pastures. The current DB design protocol recommends a minimum pond volume of 120 m3 ha−1 of contributing catchment with a maximum pond storage capacity of 10 000 m3. No previous study has investigated the ability of DBs to decrease annual suspended sediment (SS) loads leaving pastoral catchments. Annual SS yields delivered to two DBs with 20 ha and 55 ha catchments were 109 and 28 kg SS ha−1, respectively, during this 12-month study. The DBs retained 1280 kg (59%) and 789 kg (51%) of annual SS loads delivered from the catchments as a result of the bunds' ability to impede stormflow and facilitate soil infiltration and sediment deposition. The results of this study highlight the ability of DBs to decrease SS loads transported from pastures in surface runoff, even during large storm events, and suggests DBs are able to reduce P loading in Lake Rotorua. 相似文献
167.
John M. Livingston Vladimir N. Kapustin Beat Schmid Philip B. Russell Patricia K. Quinn Timothy S. Bates Philip A. Durkee Peter J. Smith Volker Freudenthaler Matthias Wiegner Dave S. Covert Santiago Gassó Dean Hegg Donald R. Collins Richard C. Flagan John H. Seinfeld Vito Vitale Claudio Tomasi 《Tellus. Series B, Chemical and physical meteorology》2000,52(2):594-619
168.
In the Basle region of Switzerland we demonstrate that rockfall blocks can be dated accurately using the radiocarbon method. Soil beneath rockfall blocks containing organic macro‐remains was sampled at four cliff sites in the Tabular Jura south‐east of Basle. A lightweight drilling rig drills a 101‐mm‐diameter hole through rockfall blocks up to 6 m in height. A downhole sampler is used to recover soil samples from below the blocks. Eighteen radiocarbon dates on charcoal, wood, needles of conifers and organic macro‐remains from 11 blocks gave dates between 970 and 440 bp . Calibrated ages range between ad 1210 and ad 1450. These results, along with field observations and historical research, suggest that a large number of blocks toppled as rockfalls within a short time interval in the epicentral area of the ad 1356 Basle earthquake. 相似文献
169.
Richard McCreary John McGaughey Yves Potvin Dave Ecobichon Marty Hudyma Harald Kanduth Alain Coulombe 《Pure and Applied Geophysics》1992,139(3-4):349-373
Located in northern Québec, the Lac Shortt Mine was a small gold mine consisting of a thin subvertical orebody which was mined in three main phases. High stress and rockbursting conditions were experienced when ore was extracted in the upper zone between the surface and a depth of 500 metres during the first two phases of mining. Severe rockbursts were experienced in late 1989 near the shaft and in the footwall development following a deepening of the mine shaft to a depth of 830 m and partial development of footwall drift access for the third phase of mining (the mining of the lower zone starting at a depth of 830 m moving upward toward a depth of 500 m). A 16-channel Electrolab MP250 microseismic system, with a Queen's University Full-Waveform piggy-back system, was installed underground at the site due to these problems.It was expected that the thinning sill would be subjected to an ever-increasing load as the thickness of the 500 m sill pillar decreased in the face of the mining excavation from below. A monitoring program consisting of the microseismic monitoring system, a range of conventional geomechanics monitoring tools as well as the undertaking of periodic seismic tomography surveys to assess the ongoing state of stress and rock mass condition within the sill was therefore warranted.The anomalously high-magnitude stress field and the brittle rockmass created a situation in which rockmass failure was common and violent. In the creation and thinning of the sill pillar, the location of banded microseismic activity was crucial in tracing rockmass failure and the associated ground control problems. Reliable source-location determination enabled the identification of areas of stress increase. The movement of the rockmass failure front could be followed, and was responsible for stope dilution, footwall and orebody development deterioration, and caving.Source-mechanism analyses gave accurate double-couple solutions for approximately forty percent of these events having at least ten recognizable polarities. Results suggested movement along vertical north-south striking or vertical east-west striking features. Underground observation of damaged access points showed that vertical north-south striking joints were experiencing failure.The microseismic activity, which was consistently concentrated close to the southwest and northeast corners of current production stopes, could be explained by a stress field oriented obliquely to the strike of the orebody, as measured prior to shrinkage of the sill pillar byin situ stress measurements and observed borehole overbreaks. The orientations of theP andT axes for the microseismic activity further confirmed that the stress field oriented obliquely to strike.While an increase in compressional-wave velocity of 2.3 percent, corresponding to a measured stress increase of approximately 10 MPa could be measured by repeated tomographic surveys, it was relatively small and only a factor of two or so above the velocity measured uncertainty. The relative insensitivity of thein situ rock mass modulus to the applied stress is believed to be largely due to the rockmass discontinuities being relatively closed prior to stress increase, as substantiated by the small deformations seen by the extensometer and borehole camera. This situation existed because of the very high pre-mining stress level.The experimental demonstration that the rock could not absorb substantially increased load through the mechanism of discontinuity closure or tightening (which would be reflected in the modulus) may be evidence in itself of potentially burst-prone ground, such as encountered at Lac Shortt. 相似文献
170.
T. Wenzel D. F. Mertz R. Oberhänsli T. Becker P. R. Renne 《International Journal of Earth Sciences》1997,86(3):556-570
The plutonic complex of the Meissen massif (northern margin of the Bohemian massif) comprises dioritic to mainly monzonitic and granitic rocks. The diorite to monzonite intrusions show major and trace element patterns typical for shoshonitic series. The chemical signatures of less crustally contaminated diorites are similar to arc-related shoshonitic rocks derived from continental lithospheric mantle (CLM) sources previously enriched by subduction of altered oceanic crust. Laser step heating 40Ar/39Ar analyses on actinolitic to edenitic amphiboles from geographically different occurrences of the monzonitic intrusion yielded concordant plateau ages as well as total gas ages ranging from 329.1±1.4 to 330.4±1.4?Ma and from 330.4±2.1 to 330.6±1.8?Ma, respectively. These cooling ages are indistinguishable from sensitive highresolution ion microprobe (SHRIMP) 238U/206Pb intrusion ages measured on magmatic zircon rims from the monzonite (Nasdala et al., submitted). This shows that the monzonite intrusion is probably not related temporally to active subduction because it postdates eclogites of the adjacent Saxonian Erzgebirge by approximately 20?Ma. The shoshonitic magmas intruded during strike-slip tectonism along the Elbe valley zone. The enrichment of their mantle sources may be of Upper Devonian/Lower Carboniferous age or older. Intrusions of shoshonitic to ultra-potassic (K-rich) rocks during the Upper Visean/Namurian are widespread in the Moldanubian zone. Based on similar ages and structural relationships a similar post-collisional setting to the Meissen shoshonitic rocks can be demonstrated. Most of these occurrences cut high-grade nappe units which were subducted during the Upper Devonian/Lower Carboniferous. In contrast to the Meissen massif, at least the ultra-potassic members of the Central and the South Bohemian batholiths were derived from CLM sources enriched by fluids or melts released from subducted oceanic crust and by greater portions of crustal material. Despite the similar post-collisional geodynamic setting of the K-rich intrusions, different enrichment processes generated mid-European Hercynian CLM sources with heterogeneous major and trace element and isotopic signatures. 相似文献