首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   19篇
  国内免费   1篇
测绘学   14篇
大气科学   10篇
地球物理   108篇
地质学   80篇
海洋学   22篇
天文学   31篇
综合类   1篇
自然地理   12篇
  2024年   1篇
  2022年   3篇
  2021年   3篇
  2020年   14篇
  2019年   10篇
  2018年   18篇
  2017年   11篇
  2016年   16篇
  2015年   10篇
  2014年   18篇
  2013年   15篇
  2012年   6篇
  2011年   16篇
  2010年   20篇
  2009年   22篇
  2008年   15篇
  2007年   17篇
  2006年   9篇
  2005年   13篇
  2004年   11篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有278条查询结果,搜索用时 14 毫秒
141.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
142.
Estimation of young water fractions (Fyw), defined as the fraction of water in a stream younger than approximately 2–3 months, provides key information for water resource management in catchments where runoff is dominated by snowmelt. Knowing the average dependence of summer flow on winter precipitation is an essential context for comparing regional drought severity and provides the hydrological template for downstream water users and ecosystems. However, Fyw estimation based on seasonal signals of stable isotopes of oxygen and hydrogen has not yet explicitly addressed how to parsimoniously include the seasonal shift of water input from snow. Using experimental data from three high-elevation, Alpine catchments (one dominated by glacier and two by snow), we propose a framework to explicitly include the delays induced by snow storage into estimates of Fyw. Scrutinizing the key methodological choices when estimating Fyw from isotope data, we find that the methods used to construct precipitation input signals from sparse isotope samples can significantly impact Fyw. Given this sensitivity, our revised procedure estimates a distribution of Fyw values that incorporates a wide range of possible methodological choices and their uncertainties; it furthermore compares the commonly used amplitude ratio approach to a direct convolution approach, which circumvents the assumption that the isotopic signals have a sine curve shape, an assumption that is generally violated in snow-dominated environments. Our new estimates confirm that high-elevation Alpine catchments have low Fyw values, spanning from 8 to 11%. Such low values have previously been interpreted as the impact of seasonal snow storage alone, but our comparison of different Fyw estimation methods suggests that these low Fyw values result from a combination of both snow cover effects and longer storage in the subsurface. In contrast, in the highest elevation, glacier dominated catchment, Fyw is 3–4 times greater compared to the other two catchments, due to the lower storage and faster drainage processes. A future challenge, capturing spatio-temporal snowmelt isotope signals during winter baseflow and the snowmelt period, remains to improve constraints on the Fyw estimation technique.  相似文献   
143.
Urban Computing is a branch of Pervasive Computing that investigates urban settings and everyday lifestyles. A large quantity of information to develop pervasive applications for urban environments is often already available, even if scattered and not integrated: maps, points of interest, user locations, traffic, pollution, and events are just a few examples of the digitalized information which we can access on the Web. Applications for mobile users that leverage such information are rapidly growing. In this article, we report our experience in addressing practical computational issues influencing the use of Geographic Information Systems and geospatial data from the standpoint of semantics and pervasive computing. We refer to the early achievements of the LarKC project, in which we developed an Urban Computing demonstrator. We highlight the positive sides of our experience and we discuss open issues and possible advances.  相似文献   
144.
145.
The Bàlitx area is located on the steep coastal side of the Tramuntana Range (Majorca), a mountainous region which was declared a World Heritage Site by UNESCO in 2011 in the cultural landscape category. The Bàlitx site was occupied by farming areas with dry stone constructions and water storing systems of both Roman and Islamic origin. The coastal landscape is characterised by a large fault escarpment of up to 260 m in height. Lateral spreading processes are favoured by local stratigraphy and tectonics in an energetic coastal dynamics scenario. Block spreading morphologies are identified along the escarpment, with large, rocky blocks of volumes up to 60?×?103 m3 moving very slowly until their collapse. Consequently, a thick and highly karstified breccia deposit is accumulated at the base of the scarp. The lowest, oldest breccia outcrop has been dated (Th/U), and an age of 82.5?±?5.6 kyr was obtained, reflecting the time span this process has been active. Additionally, numerous geomorphological slope features are identified in the area: landslides, rockfalls, and, more specifically, long and deep cracks in the hanging wall block of the fault, which also reveal active lateral spreading processes. Coastal dynamics have been investigated by interpreting offshore geophysical studies, bathymetry data and borehole information to determine the role of wave energy in the stability of the slope. Additionally, 14 SAR images from the ALOS PALSAR satellite have been exploited for the present work, covering a period spanning from 2007 to 2010, an anomalous rainy period in the region. Images were processed using the Persistent Scattered Interferometry (PSI) technique. PSInSAR results reveal that the rate of movement for the Bàlitx lateral spreading is extremely low (??5.2 mm/year on average), but major activity has been detected in the NE sector, where velocity rates can reach values of up to ??16 mm/year Coastal dynamics in the area can explain this, as a small island generates wave refraction and reflection determining more intense erosive processes in the NE part, which lead to a greater destabilising effect on the slopes. A simple vulnerability approach has been developed to take the elements of cultural heritage into account. Vulnerability increases from SW to NE, in accordance with landslide activity. The Bàlitx case study could provide a testimony to the effects of mass movements and coastal dynamics in an exceptional example of Mediterranean agricultural landscape.  相似文献   
146.
We describe a novel inexpensive method, utilizing particle image velocimetry (PIV) and refractive index‐matching (RIM) for visualizing and quantifying the flow field within bio‐amended porous media. To date, this technique has been limited to idealized particles, whose refractive index does not match that of fresh water and thus requires specialized and often toxic or hazardous fluids. Here, we use irregularly shaped grains made of hydrogel as the solid matrix and water as the fluid. The advantage of using water is that it provides, for the first time, the opportunity to study both hydraulic and biological processes, which typically occur in soils and streambeds. By using RIM coupled with PIV (RIM‐PIV), we measured the interstitial flow field within a cell packed with granular material consisting of hydrogel grains in a size range of 1–8 mm, both in the presence and in the absence of Sinorhizobium meliloti bacteria (strain Rm8530). We also performed experiments with fluorescent tracer (fluorescein) and fluorescent microbes (Shewanella GPF MR‐1) to test the capability of visualizing solute transport and microbial movements. Results showed that the RIM‐PIV can measure the flow field for both biofilm‐free and biofilm‐covered hydrogel grains. The fluorescent tracer injection showed the ability to visualize both physical (concave surfaces and eddies) and biological (biofilms) transient storage zones, whereas the fluorescent microbe treatment showed the ability to track microbial movements within fluids. We conclude that the proposed methodology is a promising tool to visualize and quantify biofilm attachment, growth, and detachment in a system closer to natural conditions than a 2D flow cell experiment.  相似文献   
147.
The performance of managed artificial recharge (MAR) facilities by means of surface ponds (SP) is controlled by the temporal evolution of the global infiltration capacity I c of topsoils. Cost-effective maintenance operations that aim to maintain controlled infiltration values during the activity of the SP require the full knowledge of the spatio-temporal variability of I c . This task is deemed uncertain. The natural reduction in time of I c depends on complex physical, biological and chemical reactions that clog the soil pores and has been observed to decay exponentially to an asymptotic non-zero value. Moreover, the relative influence of single clogging processes depend on some initial parameters of the soil, such as the initial infiltration capacity (I c,0). This property is also uncertain, as aquifers are typically heterogeneous and scarcely characterized in practical situations. We suggest a method to obtain maps of I c using a geostatistical approach, which is suitable to be extended to engineering risk assessment concerning management of SP facilities. We propose to combine geostatistical inference and a temporally-lumped physical model to reproduce non-uniform clogging in topsoils of a SP, using field campaigns of local and large scale tests and additionally by means of satellite images as secondary information. We then postulate a power-law relationship between the parameter of the exponential law, λ, and I c,0. It is found that calibrating the two parameters of the power law model it is possible to fit the temporal evolution of total infiltration rate at the pond scale in a MAR test facility. The results can be used to design appropriate measures to selectively limit clogging during operation, extending the life of the infiltration pond.  相似文献   
148.
The medieval fortresses are a very common and distinctive type among the Emilian historical constructions and the earthquake of May 20 and 29, 2012 highlighted their high vulnerability. Starting from the analysis of the geometrical and constructive features, the interpretation of their seismic vulnerability has been based on an accurate damage assessment and supported by the numerical results of typical configurations. An abacus of recurring seismic damage mechanisms in fortresses has been proposed: it in particular concerns the towers and their interaction with the fortress perimeter walls. Moreover, the seismic response of the most important fortresses in the epicentral area has been described referring to their historical notes, the recent interventions and their influence on the seismic damage.  相似文献   
149.
The Orbetello lagoon (Tyrrhenian coast, Italy) receives treated urban and land based fishfarms wastewater. The development of severe eutrophication imposed the three main activity adoption focuses on (1) macroalgae harvesting; (2) pumping of water from the sea; (3) confining wastewater to phytotreatment ponds. The responses to these interventions were rapid and macroalgal reduction growth and seagrass return were recorded. Since 1999, a new macroalgal development was recorded. The aim of this research was to discover whether the recent macroalgal growth can be attributed to the continuing wastewater influx from the remaining persistent anthropic sources (PAS) or from the sediment nutrient release. A monitoring programme was carried out between August 1999 and July 2000 in order to measure dissolved inorganic nitrogen and phosphorus in the wastewaters entering into the lagoon and in central lagoon areas, seaweed and seagrass distribution and lagoon N, P annual budgets. The results showed higher N and P values close to PAS. The distribution of the macroalgal species confirms that the available P comes almost entirely from these remaining PAS. In conclusion, the environmental measures adopted produced a significant reduction in algal biomass development in the lagoon; the macroalgal harvesting activities produced a sediment disturbance with following oxidize conditions, which make P unavailable in the lagoon water, excepting close the PAS.  相似文献   
150.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号