首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   22篇
  国内免费   3篇
测绘学   42篇
大气科学   67篇
地球物理   225篇
地质学   205篇
海洋学   63篇
天文学   50篇
综合类   1篇
自然地理   20篇
  2023年   3篇
  2021年   12篇
  2020年   11篇
  2019年   5篇
  2018年   22篇
  2017年   20篇
  2016年   25篇
  2015年   23篇
  2014年   26篇
  2013年   39篇
  2012年   18篇
  2011年   37篇
  2010年   26篇
  2009年   43篇
  2008年   36篇
  2007年   37篇
  2006年   21篇
  2005年   17篇
  2004年   18篇
  2003年   13篇
  2002年   12篇
  2001年   10篇
  2000年   15篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1991年   3篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   12篇
  1984年   11篇
  1983年   11篇
  1982年   19篇
  1981年   9篇
  1980年   7篇
  1979年   13篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
排序方式: 共有673条查询结果,搜索用时 15 毫秒
31.
32.
The volcanic eruptions have produced death and devastation along the ages; the victims caused by the documented events are about 260,000. Today, people subjected to volcanic risk are 500 million. They live predominantly in large conurbations, such as Tokyo, Mexico City, Seattle and Naples, which are located in the proximity of volcanoes with a high probability to erupt. Further, cause of concern is the elevated growth rates of the urban populations in the developing countries, seeing that many cities are located just above the tectonic belts where are predominantly situated the World’s most explosive volcanoes. Therefore, the volcanic risk mitigation of these areas requires a careful territorial planning together with an adequate knowledge of the behaviour of constructions under the eruption effects. The problem is very complex considering that a several number of actions (such as lavas, earthquakes, ash fall, pyroclastic flows, ballistics, landslides, tsunami and lahars) with a peculiar time–space distribution are produced by an eruptive event. Moreover, for the impact evaluation of a volcanic eruption, the time–space effect acquires a great importance, differently by the case of single catastrophic event (such as tectonic earthquakes, debris flows, etc.), since the sequence of the several exceptional actions which occur during an eruptive event, that modify the resistance characteristics of the struck constructions, in consequence, the impact damage evaluation requires analyses, step by step, of the eruptive process, the damage accumulated on the buildings and the distribution of the damage on the territory. All these aspects are examined in this paper which furnishes a useful compendium relating to the impact damage assessment produced on buildings by an explosive volcanic eruption, through the time–space variability analysis. This document organically summarizes the results of about 15 years of researches conducted by the PLINIVS Study Centre (Study Centre for the Hydrogeological, Volcanic and Seismic Engineering) with reference to the volcanic risk assessment, in the framework of the scientific literature on the topic. The paper analyses the probabilistic approaches used these days to treat Hazard, Vulnerability and Exposure in risk and impact evaluation of volcanic eruptions. Reliability of the model available is discussed; open problems and future improvement of the research in progress are highlighted. In conclusion, recommendations to follow for impact estimation studies in volcanology are reported.  相似文献   
33.
Due to their balneotherapeutic features, the organic-rich sediments in Makirina Cove are an important source of healing mud. An environmental geochemistry approach using normalization techniques was applied to evaluate the anthropogenic contribution of trace metals to sediments used as healing mud. Sediment geochemistry was found to be associated with land-use change and storm events, as well as with proximity of a road with heavy traffic in the summer months. Local valley topography preferentially channels lithogenic and pollutant transport to the cove. Concentrations and distribution of trace metals indicate lithogenic (Ni, Cr, Co) and anthropogenic (Pb, Cu, Zn and Se) contributions to the sediments. The calculation of enrichment factors indicates a moderate (EFs between 2–3.5) input of anthropogenic Cu and Pb in surficial sediments to a depth of 10 cm. Patients using the Makirina Cove sediments as healing mud could be to some extent exposed to enhanced uptake of metals from anthropogenic sources via dermal contact.  相似文献   
34.
Abstract: Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 μm, ≤30 μm and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550°C. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.  相似文献   
35.
36.
Single crystals of devitrite (Na2Ca3Si6O16) were synthesized as pale-yellow transparent needle shaped crystals using a Na2MoO4-flux. Experiments aiming to prepare the K-equivalent of devitrite from the corresponding K2MoO4-flux were unsuccessful. The crystal structure of devitrite was determined from single-crystal X-ray diffraction data (Mo-Kα radiation, 2θmax.?=?25.34°, Rint?=?2.66%) and refined in space group P $ \bar{1} $ (no. 2) to R(|F|)?=?3.08% using 2,513 observed reflections with I?>?2σ(I). Unit-cell parameters are: a?=?7.2291(8), b?=?10.1728(12), c?=?10.6727(12) Å, α?=?95.669(9), β?=?109.792(10), γ?=?99.156(9)°, V?=?719.19(14) Å3, Z?=?2. The structure belongs to the group of multiple chain silicates consisting of dreier quadruple chains, i.e. the crystallochemical formula can be written as $ {\hbox{N}}{{\hbox{a}}_2}{\hbox{C}}{{\hbox{a}}_3}\left\{ {{\mathbf{uB}}{,4}_\infty^1} \right\}\left[ {^3{\hbox{S}}{{\hbox{i}}_6}} \right.\left. {{{\hbox{O}}_{16}}} \right\} $ . Linkage between the bands running along [100] is provided by double chains of edge sharing CaO6-octahedra as well as additional more irregularly coordinated Na- and Ca-cations located in the tunnel-like cavities of the mixed tetrahedral-octahedral framework. Structural investigations were completed by Raman and infrared spectroscopical studies. The allocation of the bands to certain vibrational species was aided by density functional theory (DFT) calculations.  相似文献   
37.
38.
39.
This study is an attempt to unravel the tectono-metamorphic history of high-grade metamorphic rocks in the Eastern Erzgebirge region. Metamorphism has strongly disturbed the primary petrological genetic characteristics of the rocks. We compare geological, geochemical, and petrological data, and zircon populations as well as isotope and geochronological data for the major gneiss units of the Eastern Erzgebirge; (1) coarse- to medium-grained “Inner Grey Gneiss”, (2) fine-grained “Outer Grey Gneiss”, and (3) “Red Gneiss”. The Inner and Outer Grey Gneiss units (MP–MT overprinted) have very similar geochemical and mineralogical compositions, but they contain different zircon populations. The Inner Grey Gneiss is found to be of primary igneous origin as documented by the presence of long-prismatic, oscillatory zoned zircons (540 Ma) and relics of granitic textures. Geochemical and isotope data classify the igneous precursor as a S-type granite. In contrast, Outer Grey Gneiss samples are free of long-prismatic zircons and contain zircons with signs of mechanical rounding through sedimentary transport. Geochemical data indicate greywackes as main previous precursor. The most euhedral zircons are zoned and document Neoproterozoic (ca. 575 Ma) source rocks eroded to form these greywackes. U–Pb-SHRIMP measurements revealed three further ancient sources, which zircons survived in both the Inner and Outer Grey Gneiss: Neoproterozoic (600–700 Ma), Paleoproterozoic (2100–2200 Ma), and Archaean (2700–2800 Ma). These results point to absence of Grenvillian type sources and derivation of the crust from the West African Craton. The granite magma of the Inner Grey Gneiss was probably derived through in situ melting of the Outer Grey Gneiss sedimentary protolith as indicated by geological relationships, similar geochemical composition, similar Nd model ages, and inherited zircon ages. Red Gneiss occurs as separate bodies within fine- and medium-grained grey gneisses of the gneiss–eclogite zone (HP–HT overprinted). In comparison to Grey Gneisses, the Red Gneiss clearly differs in geochemical composition by lower contents of refractory elements. Rocks contain long-prismatic zircons (480–500 Ma) with oscillatory zonation indicating an igneous precursor for Red Gneiss protoliths. Geochemical data display obvious characteristics of S-type granites derived through partial melting from deeper crustal source rocks. The obtained time marks of magmatic activity (ca. 575 Ma, ca. 540 Ma, ca. 500–480 Ma) of the Eastern Erzgebirge are compared with adjacent units of the Saxothuringian zone. In all these units, similar time marks and geochemical pattern of igneous rocks prove a similar tectono-metamorphic evolution during Neoproterozoic–Ordovician time.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号