首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2755篇
  免费   161篇
  国内免费   34篇
测绘学   119篇
大气科学   232篇
地球物理   623篇
地质学   1040篇
海洋学   245篇
天文学   408篇
综合类   15篇
自然地理   268篇
  2023年   15篇
  2022年   23篇
  2021年   68篇
  2020年   91篇
  2019年   81篇
  2018年   94篇
  2017年   113篇
  2016年   133篇
  2015年   94篇
  2014年   122篇
  2013年   178篇
  2012年   130篇
  2011年   175篇
  2010年   153篇
  2009年   162篇
  2008年   142篇
  2007年   103篇
  2006年   99篇
  2005年   98篇
  2004年   88篇
  2003年   81篇
  2002年   71篇
  2001年   53篇
  2000年   48篇
  1999年   34篇
  1998年   28篇
  1997年   34篇
  1996年   32篇
  1995年   29篇
  1994年   16篇
  1993年   16篇
  1992年   23篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   16篇
  1987年   21篇
  1986年   8篇
  1985年   21篇
  1984年   27篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   14篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   11篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2950条查询结果,搜索用时 296 毫秒
951.
952.
953.
A topological representation of a rural catchment is proposed here in addition to the generally used topographic drainage network. This is an object‐oriented representation based on the identification of the inlets and outlets for surface water flow on each farmer's field (or plot) and their respective contributing areas and relationships. It represents the catchment as a set of independent plot outlet trees reaching the stream, while a given plot outlet tree represents the pattern of surface flow relationships between individual plots. In the present study, we propose to implement functions related to linear and surface elements of the landscape, such as hedges or road networks, or land use, to obtain what we call a landscape drainage network which delineates the effective contributing area to the stream, thus characterizing its topological structure. Landscape elements modify flow pathways and/or favour water infiltration, thus reducing the area contributing to the surface yield and modifying the structure of the plot outlet trees. This method is applied to a 4·4‐km2 catchment area comprising 43 955 pixels and 312 plots. While the full set of 164 plot outlet trees, with an average of 7 plots per tree, covers 100% of the total surface area of the catchment, the landscape drainage network comprises no more than 37 plot outlet trees with an average of 2 plots per tree, accounting for 52 and 7% of the catchment surface area, when taking account of linear elements and land use, respectively. This topological representation can be easily adapted to changes in land use and land infrastructure, and provides a simple and functional display for intercomparison of catchments and decision support regarding landscape and water management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
954.
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability of soil respiration. We investigated growing season soil respiration in a ~393 ha subalpine watershed in Montana across eight riparian–hillslope transitions that differed in slope, upslope accumulated area (UAA), aspect, and groundwater table dynamics. We collected daily‐to‐weekly measurements of soil water content (SWC), soil temperature, soil CO2 concentrations, surface CO2 efflux, and groundwater table depth, as well as soil C and N concentrations at 32 locations from June to August 2005. Instantaneous soil surface CO2 efflux was not significantly different within or among riparian and hillslope zones at monthly timescales. However, cumulative integration of CO2 efflux during the 83‐day growing season showed that efflux in the wetter riparian zones was ~25% greater than in the adjacent drier hillslopes. Furthermore, greater cumulative growing season efflux occurred in areas with high UAA and gentle slopes, where groundwater tables were higher and more persistent. Our findings reveal the influence of landscape position and groundwater table dynamics on riparian versus hillslope soil CO2 efflux and the importance of time integration for assessment of soil CO2 dynamics, which is critical for landscape‐scale simulation and modelling of soil CO2 efflux in complex landscapes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
955.
The White method, routinely used to estimate phreatophyte transpiration from diel groundwater variation, also provides measures of total evapotranspiration (ET) and groundwater fluxes in surface waters. Such applications remain rare, however, and critically require accurate representation of stage‐dependent variation in specific yield (Sy). High‐resolution stage data from three Florida swamps were used to evaluate different relationships between Sy and stage (ecosystem specific yield, ESY). A discretized form, ESYD, assumes constant Sy near unity for inundated conditions, applying soil Sy for belowground stage and open water Sy (Sy,OW ≈ 1.0) for aboveground stage. A mixture approach, ESYM, applies a stage‐dependent interpolation between Sy,Soil and Sy,OW using stage‐area relationships and assumes rapid lateral equilibration between inundated and non‐inundated wetland areas. Finally, an empirical formulation, ESYRR, uses measured ratios of rain to rise to estimate stage‐specific Sy. All formulations yielded reasonable ET rates (ET ≈ PET) at high stage; ESYD markedly overestimated ET (ET/PET > 3) at intermediate stage, whereas ESYM and ESYRR maintained ET/PET near 1.0. Estimated groundwater fluxes using ESYM and ESYRR correlated well with Darcy‐estimated flows, but were larger, likely due to uncertainties in Darcy parameters. Well transects across wetlands documented equal water elevation and diel variation across inundated and non‐inundated areas, verifying rapid equilibration that reduces Sy and explaining overestimation by ESYD. However, equilibration area varied within and among wetlands, explaining observed differences between ESYM and ESYRR, and suggesting ESYRR may be preferred. Stage histograms followed the shape of ESYRR, highlighting reciprocal influences of ESY on stage stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
956.
Topography exerts critical controls on many hydrologic, geomorphologic and biophysical processes. However, many watershed modelling systems use topographic data only to define basin boundaries and stream channels, neglecting opportunities to account for topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. Here, we demonstrate a method that uses topographic data to adjust spatial soil morphologic and hydrologic attributes: texture, depth to the C‐horizon, saturated conductivity, bulk density, porosity and the water capacities at field (33 kpa) and wilting point (1500 kpa) tensions. As a proof of concept and initial performance test, the values of the topographically adjusted soil parameters and those from the Soil Survey Geographic Database (SSURGO; available at 1 : 20 000 scale) were compared with measured soil pedon pit data in the Grasslands Soil and Water Research Lab watershed in Riesel, TX. The topographically adjusted soils were better correlated with the pit measurements than were the SSURGO values. We then incorporated the topographically adjusted soils into an initialization of the Soil and Water Assessment Tool model for 15 Riesel research watersheds to investigate how changes in soil properties influence modelled hydrological responses at the field scale. The results showed that the topographically adjusted soils produced better runoff predictions in 50% of the fields, with the SSURGO soils performing better in the remainder. In addition, the a priori adjusted soils result in fewer calibrated model parameters. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases, improve model performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
957.
Extremely high precipitation occurs in the Southern Alps of New Zealand, associated with both orographic enhancement and synoptic‐scale weather processes. In this study, we test the hypothesis that atmospheric rivers (ARs) are a key driver of floods in the Southern Alps of New Zealand. Vertically integrated water vapour and horizontal water vapour transport, and atmospheric circulation, are investigated concurrently with major floods on the Waitaki River (a major South Island river). Analysis of the largest eight winter maximum floods between 1979 and 2012 indicates that all are associated with ARs. Geopotential height fields reveal that these ARs are located in slow eastward moving extratropical cyclones, with high pressure to the northeast of New Zealand. The confirmation of ARs as a contributor to Waitaki flooding indicates the need for their further exploration to better understand South Island hydrometeorological extremes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
958.
Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US-Mexico border region.  相似文献   
959.
River water temperature is a very important variable in ecological studies, especially for the management of fisheries and aquatic resources. Temperature can impact on fish distribution, growth, mortality and community dynamics. River evaporation has been identified as an important heat loss and a key process in the thermal regime of rivers. However, its quantification remains a challenge, mainly because of the difficulty of making direct measurements. The objectives of this study were to characterize the evaporative heat flux at different scales (brook vs river) and to improve the estimation of the evaporative heat flux in a stream temperature model at the hourly timescale. Using a mass balance approach with floating minipans, we measured river evaporation at an hourly timescale in a medium‐sized river (Little Southwest Miramichi) and a small brook (Catamaran Brook) in New Brunswick, Canada. With these direct measurements of evaporation, we developed mass transfer equations to estimate hourly evaporation rates from microclimate conditions measured 2 m above the stream. During the summer 2012, river evaporation was more important for the medium‐sized river with a mean daily evaporation rate of 3.0 mm day?1 in the Little Southwest Miramichi River compared with that of 1.0 mm day?1 in Catamaran Brook. Evaporation was the main heat loss mechanism in the two studied streams and was responsible for 42% of heat losses in the Little Southwest Miramichi River and 34% of heat losses in Catamaran Brook during the summer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
960.
One of the key challenges during the development of the Virtual World Project ‘egame environment’ discussed in this issue was the creation of the digital virtual landscape from an original 2002 base map of a field area. In this [online] paper we will walk through the design pipeline that was developed by the virtual worlds project team, and discuss some of the issues that were discovered when translating from a 2D map to a 3D environment using available software, for others interested in replicating this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号