首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2789篇
  免费   164篇
  国内免费   35篇
测绘学   112篇
大气科学   236篇
地球物理   656篇
地质学   1041篇
海洋学   243篇
天文学   417篇
综合类   14篇
自然地理   269篇
  2023年   16篇
  2022年   26篇
  2021年   68篇
  2020年   90篇
  2019年   81篇
  2018年   98篇
  2017年   111篇
  2016年   139篇
  2015年   98篇
  2014年   123篇
  2013年   171篇
  2012年   131篇
  2011年   185篇
  2010年   156篇
  2009年   160篇
  2008年   146篇
  2007年   104篇
  2006年   96篇
  2005年   103篇
  2004年   85篇
  2003年   85篇
  2002年   72篇
  2001年   52篇
  2000年   49篇
  1999年   34篇
  1998年   28篇
  1997年   35篇
  1996年   31篇
  1995年   30篇
  1994年   15篇
  1993年   17篇
  1992年   24篇
  1991年   19篇
  1990年   22篇
  1989年   13篇
  1988年   15篇
  1987年   19篇
  1986年   8篇
  1985年   21篇
  1984年   26篇
  1983年   19篇
  1982年   20篇
  1981年   22篇
  1980年   14篇
  1979年   9篇
  1978年   12篇
  1977年   13篇
  1976年   10篇
  1975年   14篇
  1974年   17篇
排序方式: 共有2988条查询结果,搜索用时 15 毫秒
91.
This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula, $$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$ where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970?cm?1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.  相似文献   
92.
The spatial and temporal distributions of major elements were investigated in the surface waters and in associated suspended matter at two sites of the upper Loire basin (Orleans and Brehemont) between 1995 and 1998.According to geochemical and isotopic patterns, the dissolved load appears to result from a process of mixing rainwater inputs, weathering processes of carbonate and silicate bedrock, and agricultural and urban inputs. Natural inputs influence 60% of water chemical composition at both sites. Annual dissolved fluxes were estimated to be 1300 103 t/y at Orleans and 1620 103 t/y at Brehemont. Major elements are transported mainly in the dissolved fraction. After correcting for atmospheric and anthropogenic inputs, the silicate specific export rate was calculated to be 11 t/y/km2 throughout the basin and the carbonate specific export rate to be from 47 t/y/km2 at Orleans to 23 t/y/km2 at Brehemont.The suspended load appears to result from at least two particle reservoirs: a silicate reservoir and a carbonate reservoir. The silicate reservoir has a detrital origin, mainly during periods of high flow, while the carbonate reservoir has a detrital origin during periods of high flow and an authigenic origin during periods of low flow. Of the total annual flow of suspended matter, this authigenic material represents 16% at Orleans, 25% at Brehemont and 37% in the fluvial part of the estuary. After correcting authigenic inputs, the specific export rate due to mechanical weathering was estimated to be 8 t/y/km2 throughout the Loire basin.  相似文献   
93.
Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain‐size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root‐mean‐square error of up to 28%, depending upon settling velocity model and grain‐size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity‐dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root‐mean‐square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand‐sized bioclastic sediments from sieve, laser diffraction, or image analysis‐derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain‐size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.  相似文献   
94.
Apatite fission-track and (U-Th)/He analyses require the liberation of intact idiomorphic apatite grains from rock samples. While routinely being carried out by mechanical methods, electrodynamic disaggregation (ED) offers an alternative approach. The high-voltage discharges produced during the ED process create localised temperature peaks (10000 K) along a narrow plasma channel. In apatite, such high temperatures could potentially reduce the length of fission tracks, which start to anneal at temperatures > 60 °C, and could also enhance He diffusion, which becomes significant at 30–40 °C over geological time scales. A comparison of fission-track analyses and (U-Th)/He ages of apatites prepared both by mechanical (jaw crusher, disk mill) and ED processing provides a way of determining whether heating during the latter method has any significant effect. Apatites from three samples of different geological settings (an orthogneiss from Madagascar, the Fish Canyon Tuff, and a muscovite-gneiss from Greece) yielded statistically identical track length distributions compared to samples prepared mechanically. Additionally, (U-Th)/He ages of apatites from a leucogranite from Morocco prepared by both methods were indistinguishable. These first results indicated that during electrodynamic disaggregation apatite crystals were not heated enough to partially anneal the fission tracks or induce significant diffusive loss of He.  相似文献   
95.
秦岭地区气溶胶对地形云降水的抑制作用   总被引:9,自引:3,他引:9  
戴进  余兴  Rosenfeld Daniel 《大气科学》2008,32(6):1319-1332
以华山站为影响站, 周围的西安、渭南和华阴作为对比站, 通过影响站与对比站降水之比——地形强化因子(Ro)的变化趋势以及Ro与能见度关系的分析, 定量研究了秦岭地区气溶胶对地形云降水的抑制作用。Ro的演变分析表明: 有观测以来Ro逐年递减, 减幅为14%~20%, 即影响站与对比站相比降水量减少了14%~20%; Ro的减少趋势与能见度递减、气溶胶递增相吻合, 说明气溶胶的增加抑制了地形云降水。Ro的递减主要是减少了中小雨 (日雨量小于30 mm) 的天数, 这种影响对浅薄的生命期较短的地形云降水作用更明显, 对于华山站, 30 mm以下的降水都会受到入云气溶胶的抑制作用, 而西安站为5 mm以下, 入云气溶胶浓度越高, 就有越厚的降水云受气溶胶影响而抑制降水; 在以动力强迫抬升为主的春秋季, 气溶胶抑制华山地形云降水20%左右, 最大可达25%; 在热对流条件下, 气溶胶对地形云和对平原地区云的抑制作用基本相当。不同风速风向下Ro的变化趋势表明, Ro递减随风速增大而加快, 迎风向 (240°~30°) 大风 (≥5 m/s) 时减少降水超过30%。由Ro与能见度关系的定量分析发现, 当能见度在14 km时Ro为1.8左右, 随着能见度的降低Ro逐渐减小, 当能见度小于8 km时,R0约为1.2, 减小了30%左右; 华山对于华阴的Ro与能见度呈线性关系, 相关系数达0.81。最后, 根据研究结果归纳出气溶胶抑制秦岭地区地形云降水的初步物理模型。  相似文献   
96.
ABSTRACT

The overarching goal of this study was to perform a comprehensive meta-analysis of irrigated agricultural Crop Water Productivity (CWP) of the world’s three leading crops: wheat, corn, and rice based on three decades of remote sensing and non-remote sensing-based studies. Overall, CWP data from 148 crop growing study sites (60 wheat, 43 corn, and 45 rice) spread across the world were gathered from published articles spanning 31 different countries. There was overwhelming evidence of a significant increase in CWP with an increase in latitude for predominately northern hemisphere datasets. For example, corn grown in latitude 40–50° had much higher mean CWP (2.45?kg/m³) compared to mean CWP of corn grown in other latitudes such as 30–40° (1.67?kg/m³) or 20–30° (0.94?kg/m³). The same trend existed for wheat and rice as well. For soils, none of the CWP values, for any of the three crops, were statistically different. However, mean CWP in higher latitudes for the same soil was significantly higher than the mean CWP for the same soil in lower latitudes. This applied for all three crops studied. For wheat, the global CWP categories were low (≤0.75?kg/m³), medium (>0.75 to <1.10?kg/m³), and high CWP (≥1.10?kg/m³). For corn the global CWP categories were low (≤1.25?kg/m³), medium (>1.25 to ≤1.75?kg/m³), and high (>1.75?kg/m³). For rice the global CWP categories were low (≤0.70?kg/m³), medium (>0.70 to ≤1.25?kg/m³), and high (>1.25?kg/m³). USA and China are the only two countries that have consistently high CWP for wheat, corn, and rice. Australia and India have medium CWP for wheat and rice. India’s corn, however, has low CWP. Egypt, Turkey, Netherlands, Mexico, and Israel have high CWP for wheat. Romania, Argentina, and Hungary have high CWP for corn, and Philippines has high CWP for rice. All other countries have either low or medium CWP for all three crops. Based on data in this study, the highest consumers of water for crop production also have the most potential for water savings. These countries are USA, India, and China for wheat; USA, China, and Brazil for corn; India, China, and Pakistan for rice. For example, even just a 10% increase in CWP of wheat grown in India can save 6974 billion liters of water. This is equivalent to creating 6974 lakes each of 100?m³ in volume that leads to many benefits such as acting as ‘water banks’ for lean season, recreation, and numerous ecological services. This study establishes the volume of water that can be saved for each crop in each country when there is an increase in CWP by 10%, 20%, and 30%.  相似文献   
97.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   
98.
Rivers and streams are unstable environments in which estimation of energetic costs and benefits of habitat utilization are the daunting exercise. Empirical models of food consumption may be used to estimate energetic benefits based on abiotic and biotic conditions in patches of habitat. We performed thirty daily surveys of fish stomach contents to estimate the consumption rates for juvenile Atlantic salmon (Salmo salar) in a river. The data were used to assess whether variations of daily consumption rates existed within the river, and to develop empirical models that could predict fish consumption rates using abiotic and biotic conditions as independent variables. Daily consumption rates based on stomach content surveys in the field (range: 0.15–1.49 g dry/(100 g wet day)) varied significantly depending on habitat patch (500–1000 m2), summer period, and sampling year. Variables such as water temperature, numerical density of salmon, water depth and moon phase explained 83–93% of the variations in daily food consumption rates. Daily consumption rates tended to increase with water temperature and depth, and were also higher near a full moon. However, they tended to decrease with the numerical density of salmon. Our work suggests that empirical models based on independent variables that are relatively simple to estimate in the field may be developed to predict fish consumption rates in different habitat patches in a river.  相似文献   
99.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号