首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   7篇
  国内免费   3篇
测绘学   9篇
大气科学   39篇
地球物理   80篇
地质学   84篇
海洋学   36篇
天文学   80篇
综合类   2篇
自然地理   16篇
  2021年   2篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   11篇
  2013年   17篇
  2012年   10篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   18篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   10篇
  1983年   9篇
  1982年   2篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
111.
112.
2 and approximately 85% SO2 of the total sulfur gas. Relative amounts of He, Ar, and N2 show a distinct hot-spot signature ( ). The δ13C–CO2 is approximately −3.6‰ and δ34ST is approximately +3.3‰. The δD/δ18O of fumarole H2O indicates steam separation from local meteoric waters whose estimated minimum mean residence time from 3H analyses is ≤40 years. Fumarolic activity at Alcedo is controlled by a caldera-margin fault containing at least seven hydrothermal explosion craters, and by an intracaldera rhyolite vent. Two explosion craters which formed in 1993–1994 produce approximately 15 m3/s of steam, yet discharge temperatures are ≤97°C. Water content of the total gas is 95–97 mol.%, noncondensible gas is 92–98 mol.% CO2, and sulfur gas is dominated by H2S. Relative amounts of He, Ar, and N2 show extensive mixing between hot spot and air or air-saturated meteoric water components but the average . The δ13C–CO2 is approximately −3.5‰ and δ34ST is approximately −0.8‰. The δD/δ18O of fumarole steam indicates separation from a homogeneous reservoir that is enriched 3–5‰ in 18O compared with local meteoric water. 3H indicates that this reservoir water has a maximum mean residence time of approximately 400 years and empirical gas geothermometry indicates a reservoir temperature of 260–320°C. The intracaldera hydrothermal reservoir in Alcedo is probably capable of producing up to 150 MW; however, environmental concerns as well as lack of infrastructure and power users will limit the development of this resource. Received: 19 April 1999 / Accepted: 23 October 1999  相似文献   
113.
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson ( 2004 ), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes.  相似文献   
114.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   
115.
This research investigates residents’ knowledge and perception of the Katla volcano and emergency response procedures in all rural and urban communities located in the eastern and southern Katla hazard zones. Using a questionnaire survey conducted in 2008, we demonstrate that there is an apparent difference between rural and urban communities' knowledge and perceptions, and identify some of the issues influencing residents’ perspectives and behaviour. All rural and most urban residents have an accurate knowledge of Katla, the proposed warning system and emergency response plan. Urban residents perceived the emergency response plan to be appropriate. In comparison, rural residents did not perceive the emergency response plan as appropriate. Rural residents stated that they would personally assess the situation before deciding on a course of action independent of the proposed plan. Livelihood connections and inherited knowledge affect rural residents’ ability and willingness to comply with the recommended procedures. Factors such as hazard knowledge, sense of community and attachment to place indicate that rural residents are more resilient to volcanic hazards. Based on our findings we recommend that emergency management agencies consider issues such as personal responsibility, neighbourliness and community involvement and cooperation, to develop and implement more appropriate volcanic risk mitigation strategies. In light of the recent Eyjafjallajökull eruptions, we provide a brief discussion on the 2010 emergency response. Although our findings are Iceland-specific, our recommendations may be applied internationally to other volcanic and disaster-prone regions.  相似文献   
116.
Modeling unsaturated flow in porous media requires constitutive relations that describe the soil water retention and soil hydraulic conductivity as a function of either potential or water content. Often, the hydraulic parameters that describe these relations are directly measured on small soil cores, and many cores are needed to upscale to the entire heterogeneous flow field. An alternative to the forward upscaling method using small samples are inverse upscaling methods that incorporate soft data from geophysical measurements observed directly on the larger flow field. In this paper, we demonstrate that the hydraulic parameters can be obtained from cross borehole ground penetrating radar by measuring the first arrival travel time of electromagnetic waves (represented by raypaths) from stationary antennae during a constant flux infiltration experiment. The formulation and coupling of the hydrological and geophysical models rely on a constant velocity wetting front that causes critical refraction at the edge of the front as it passes by the antennae. During this critical refraction period, the slope of the first arrival data can be used to calculate (1) the wetting velocity and (2) the hydraulic conductivity of the wet (or saturated) soil. If the soil is undersaturated during infiltration, then an estimate of the saturated water content is needed before calculating the saturated hydraulic conductivity. The hydraulic conductivity value is then used in a nonlinear global optimization scheme to estimate the remaining two parameters of a Broadbridge and White soil.  相似文献   
117.
A lightweight modular rosette system has been developed that can be launched and recovered from aircraft in ice-covered waters through a 12 in. diameter hole in the ice. The small diameter is achieved by the modular design, in which a CTD module is attached to the end of a conducting cable and water bottle modules (four 4-L bottles per module) are positioned vertically above it. A novel tripping mechanism based on melting a link of monofilament line is used to close the water bottles at the desired depths. After launching the rosette, the cast proceeds like a normal rosette cast with the traces of temperature, salinity, oxygen and other desired sensors being displayed on a computer screen during the down and up casts and tripping the bottles electronically at the desired depths on the up cast. A Seabird 19+ CTD and Seabird 43 oxygen sensor are mounted in the CTD module and data acquisition and bottle tripping are controlled using a Seabird 33 deck unit and Seabird's SeaSave software run on a laptop computer. Deployment and recovery are done in a heated tent attached to the aircraft to prevent the water from freezing. After recovery the bottle modules are placed in coolers with bags of snow to stabilize the cooler temperature close to 0 °C, which is within ±1.8 °C of the in situ temperature, and the modules are transported back to a base camp for subsampling and sample processing. This system has been used to collect over 250 water samples in the ice-covered Lincoln Sea and the quality of the samples for dissolved gases and other constituents has been excellent.  相似文献   
118.
Photoionizing feedback in star cluster formation   总被引:1,自引:0,他引:1  
We present the first ever hydrodynamic calculations of star cluster formation that incorporate the effect of feedback from ionizing radiation. In our simulations, the ionizing source forms in the cluster core at the intersection of several dense filaments of inflowing gas. We show that these filaments collimate ionized outflows and suggest such an environmental origin for at least some observed outflows in regions of massive star formation. Our simulations show both positive feedback (i.e. promotion of star formation in neutral gas compressed by expanding H  ii regions) and negative feedback (i.e. suppression of the accretion flow in to the central regions). We show that the volume filling factor of ionized gas is very different in our simulations from the result from the case where the central source interacted with an azimuthally smoothed gas density distribution. As expected, gas density is the key parameter in determining whether or not clusters are unbound by photoionizing radiation. Nevertheless, we find – on account of the acceleration of a small fraction of the gas to high velocities in the outflows – that the deposition in the gas of an energy that exceeds the binding energy of the cluster is not a sufficient criterion for unbinding the bulk of the cluster mass.  相似文献   
119.
We analyze the time variation of microwave spectra and hard X-ray spectra of 1989 March 18, which are obtained from the Solar Array at the Owens Valley Radio Observatory (OVRO) and the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM), respectively. From this observation, it is noted that the hard X-ray spectra gradually soften over 50–200 keV on-and-after the maximum phase while the microwaves at 1–15 GHz show neither a change in spectral shape nor as rapid a decay as hard X-rays. This leads to decoupling of hard X-rays from the microwaves in the decay phase away from their good correlation seen in the initial rise phase. To interpret this observation, we adopt a view that microwave-emitting particles and hard X-ray particles are physically separated in an inhomogeneous magnetic loop, but linked via interactions with the Whistler waves generated during flares. From this viewpoint, it is argued that the observed decoupling of microwaves from hard X-rays may be due to the different ability of each source region to maintain high energy electrons in response to the Whistler waves passing through the entire loop. To demonstrate this possibility, we solve a Fokker-Planck equation that describes evolution of electrons interacting with the Whistler waves, taking into account the variation of Fokker-Planck coefficients with physical quantities of the background medium. The numerical Fokker-Planck solutions are then used to calculate microwave spectra and hard X-ray spectra for agreement with observations. Our model results are as follows: in a stronger field region, the energy loss by electron escape due to scattering by the waves is greatly enhanced resulting in steep particle distributions that reproduce the observed hard X-ray spectra. In a region with weaker fields and lower density, this loss term is reduced allowing high energy electrons to survive longer so that microwaves can be emitted there in excess of hard X-rays during the decay phase of the flare. Our results based on spectral fitting of a flare event are discussed in comparison with previous studies of microwaves and hard X-rays based on either temporal or spatial information.  相似文献   
120.
We study close encounters involving massive main-sequence stars and the evolution of the exotic products of these encounters as common-envelope systems or possible hypernova progenitors. We show that parabolic encounters between low- and high-mass stars and between two high-mass stars with small periastrons result in mergers on time-scales of a few tens of stellar free-fall times (a few tens of hours). We show that such mergers of unevolved low-mass stars with evolved high-mass stars result in little mass-loss  (∼0.01 M)  and can deliver sufficient fresh hydrogen to the core of the collision product to allow the collision product to burn for several million years. We find that grazing encounters enter a common-envelope phase which may expel the envelope of the merger product. The deposition of energy in the envelopes of our merger products causes them to swell by factors of ∼100. If these remnants exist in very densely populated environments  ( n ≳ 107 pc−3)  , they will suffer further collisions which may drive off their envelopes, leaving behind hard binaries. We show that the products of collisions have cores rotating sufficiently rapidly to make them candidate hypernova/gamma-ray burst progenitors and that ∼0.1 per cent of massive stars may suffer collisions, sufficient for such events to contribute significantly to the observed rates of hypernovae and gamma-ray bursts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号