首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72261篇
  免费   1457篇
  国内免费   1321篇
测绘学   1810篇
大气科学   5347篇
地球物理   14443篇
地质学   25868篇
海洋学   6603篇
天文学   16017篇
综合类   307篇
自然地理   4644篇
  2022年   442篇
  2021年   817篇
  2020年   790篇
  2019年   877篇
  2018年   1680篇
  2017年   1582篇
  2016年   1964篇
  2015年   1221篇
  2014年   1865篇
  2013年   3640篇
  2012年   2264篇
  2011年   3116篇
  2010年   2786篇
  2009年   3617篇
  2008年   3028篇
  2007年   3151篇
  2006年   3004篇
  2005年   2281篇
  2004年   2204篇
  2003年   2079篇
  2002年   1994篇
  2001年   1722篇
  2000年   1642篇
  1999年   1347篇
  1998年   1392篇
  1997年   1362篇
  1996年   1135篇
  1995年   1118篇
  1994年   991篇
  1993年   919篇
  1992年   883篇
  1991年   828篇
  1990年   881篇
  1989年   805篇
  1988年   774篇
  1987年   909篇
  1986年   779篇
  1985年   970篇
  1984年   1108篇
  1983年   980篇
  1982年   922篇
  1981年   924篇
  1980年   821篇
  1979年   757篇
  1978年   726篇
  1977年   724篇
  1976年   648篇
  1975年   628篇
  1974年   648篇
  1973年   684篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Summary ?In the south-eastern Altenbergkar–Silbereck area in the eastern Tauern window (Lungau, Salzburg) structurally controlled precious-metal (Au–Ag) mineralization is hosted in marbles of the Permo(?)-Mesozoic Silbereck Formation and in the underlying Variscan Central gneiss. During the Alpine otogeny both lithologies were affected by ductile deformation (shearing, D1; folding, D2/D3) and subsequent brittle deformation (tension gashes, D4; normal faulting, D5) related to the uplift and exhumation of the Tauern window. Mineralization is controlled by brittle D4 structures. NE–SW trending steeply dipping tension gashes of the “Tauerngoldgang” type occur within the Central gneiss. Three different marble-hosted ore types following fracture systems as well as foliation and bedding planes can be distinguished: 1) metasomatic replacement ores, 2) ores in tension gashes and 3) ores in talc-bearing structures, often containing high-grade gold and silver mineralization (native gold in association with Ag–Pb–Bi–sulfosalts). Four stages of mineralization can be distinguished which occur in all ore types: arsenopyrite–pyrite–pyrrhotite (first stage), Au–(Ag–Pb–Bi–sulfosalts) (second stage), base-metal sulfides and tetrahedrite–tennantite (third stage) and Ag-rich galena (fourth stage). Preliminary fluid inclusion data indicate temperatures of ore formation well above 300 °C (346 °C mean) for the second stage within the Central gneiss and temperatures between 310 and 230 °C for the second and third stages in the marble. Received October 12, 2001; revised version accepted September 5, 2002 Published online March 10, 2003  相似文献   
12.
Abstract Zircons have been studied from different layers of migmatites (from Arvika, western Sweden and Nelaug, southern Norway) and from a paragneiss (from Arvika) associated with one of the migmatites. The main purpose of the investigation is to establish whether or not information about zircons can help in the elucidation of the parentage and rock-forming processes of migmatites.
The elongation ratio of zircons from all layers is small and characteristic of sedimentary zircons. Further, the absence of characteristic colours and the growth trends of the zircons (indicated by the reduced major axes) observed in the various samples both support a sedimentary parentage for these rocks. The zircons of all layers exhibit secondary growth (overgrowth, outgrowth and multiple growth) due to metamorphism. Compared with the zircons from the paragneiss, those of the migmatite layers are more clouded and less rounded, some of them becoming opaque or even skeletal; this is especially true of the zircons from the leucosomes. These observations indicate an alteration of the original sedimentary zircons in the migmatite, especially in the leucosomes, in response to the migmatization process, previously interpreted as partial melting.  相似文献   
13.
A discrete element modelling of bonded granulates and investigation on the bond effect on their behaviour are very important to geomechanics. This paper presents a two‐dimensional (2‐D) discrete element theory for bonded granulates with bond rolling resistance and provides a numerical investigation into the effect of bond rolling resistance on the yielding of bonded granulates. The model consists of mechanical contact models and equations governing the motion of bonded particles. The key point of the theory is that the assumption in the original bond contact model previously proposed by the authors (55th CSCE‐ASCE Conference, Hamilton, Ont., Canada, 2002; 313–320; J. Eng. Mech. (ASCE) 2005; 131 (11):1209–1213) that bonded particles are in contact at discrete points, is here replaced by a more reliable assumption that bonded particles are in contact over a width. By making the idealization that the bond contact width is continuously distributed with the normal/tangential basic elements (BE) (each BE is composed of spring, dashpot, bond, slider or divider), we establish a bond rolling contact model together with bond normal/tangential contact models, and also relate the governing equations to local equilibrium. Only one physical parameter β needs to be introduced in the theory in comparison to the original bond discrete element model. The model has been implemented into a 2‐D distinct element method code, NS2D. Using the NS2D, a total of 86 1‐D, constant stress ratio, and biaxial compressions tests have been carried out on the bonded granular samples of different densities, bonding strengths and rolling resistances. The numerical results show that: (i) the new theory predicts a larger internal friction angle, a larger yielding stress, more brittle behaviour and larger final broken contact ratio than the original bond model; (ii) the yielding stress increases nonlinearly with the increasing value of β, and (iii) the first‐yield curve (initiation of bond breakage), which define a zone of none bond breakage and which shape and size are affected by the material density, is amplified by the bond rolling resistance in analogous to that predicted by the original bond model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
14.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
15.
A constitutive relation is derived for describing the mechanical response of chalk. The approach is based on a phenomenological framework which employs chemo‐plasticity. The properties of the material are assumed to be affected by the physico‐chemical processes that occur through the interaction between the skeleton and the pore fluid. The underlying mechanism is discussed by invoking a micromechanical analysis. The performance of the framework is illustrated by examining the evolution of mechanical characteristics in the presence of different pore fluids. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
16.
Previous research on the cetacean auditory system has consisted mostly of behavioral studies on a limited number of species. Little quantitative physiologic data exists on cetacean hearing. The frequency range of hearing varies greatly across different mammalian species. Differences among species correlate with differences in the middle-ear transfer function. Middle-ear transfer functions depend on the mechanical stiffness of the middle ear and the cochlear input impedance. The purpose of this study was to measure the middle-ear stiffness for the bottlenose dolphin (Tursiops truncatus), a species specialized for underwater high-frequency hearing and echolocation. Middle-ear stiffness was measured with a force probe that applied a known displacement to the stapes and measured the restoring force. The average middle-ear stiffness in ten dolphin ears was 1.37 N//spl mu/m, which is considerably higher than that reported for most terrestrial mammals. The relationship between middle-ear stiffness and low-frequency hearing cutoff in Tursiops was shown to be comparable to that of terrestrial mammals.  相似文献   
17.
A new approach to constraining seawater δ34S and sulphate concentration using francolite‐bound sulphate reveals an abrupt increase in δ34S to +50‰ around the Early–Middle Cambrian boundary. Such high δ34S values are best explained by increased rates of pyrite burial due to ocean anoxia coupled with an increased sensitivity of the ocean sulphate reservoir to perturbations due to low sulphate concentrations of 500–700 μgL?1. We argue that the spread of anoxic waters at this time was partly the result of greenhouse warming related to the eruption of the Kalkarindji Large Igneous Province of northern Australia and that it triggered the collapse of early metazoan reef ecosystems during the latest Early Cambrian. Mass extinctions of the last 260 Myr have all coincided with enhanced volcanic activity, while several are also associated with positive shifts in seawater δ34S. Extending this correlation back in time further implicates volcanically induced climate change as a major determining factor in biosphere evolution. Terra Nova, 18, 257–263, 2006  相似文献   
18.
19.
Summary ?A single-crystal X-ray investigation was performed on crystals of P21/c natural pigeonite with varying Ca and Fe* ( = Fe2+ + Mn2+) contents, in order to verify the effect of microtextural disorder on structure refinements and to constrain the crystal chemistry of pigeonite. Antiphase domains and exsolution lamellae affect differently the refinement results. In a crystal free of exsolution the structure obtained after refinement with all reflections is an average of that of the antiphase domains and of their boundaries, whereas in an exsolved crystal it represents only the structure of the prevailing pigeonite lamellae. The refinement using only h + k odd reflections seems to give the structure of the Ca-free pigeonite characteristic of the antiphase domains rather than that of Ca-rich domain walls. The ratio of the scale factors in refinements with all reflections and with only h + k odd reflections allows the ratios of the exsolved augite and pigeonite phases to be estimated. The crystal chemistry of the investigated samples follows the trends outlined by data on Ca-free and Fe-free synthetic samples. In particular, it is shown that Ca and Fe* substitution for Mg induce similar changes in the average structure, i.e. both induce an expansion in the M1 polyhedron and decrease the difference between the M2–O3 distances. Received October 18, 2001; revised version accepted February 15, 2002  相似文献   
20.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号