首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44095篇
  免费   717篇
  国内免费   327篇
测绘学   1054篇
大气科学   3213篇
地球物理   8586篇
地质学   15539篇
海洋学   4006篇
天文学   10013篇
综合类   97篇
自然地理   2631篇
  2021年   402篇
  2020年   401篇
  2019年   454篇
  2018年   1263篇
  2017年   1163篇
  2016年   1217篇
  2015年   682篇
  2014年   1083篇
  2013年   2095篇
  2012年   1286篇
  2011年   1712篇
  2010年   1477篇
  2009年   1992篇
  2008年   1667篇
  2007年   1742篇
  2006年   1602篇
  2005年   1768篇
  2004年   1911篇
  2003年   1649篇
  2002年   1228篇
  2001年   1057篇
  2000年   980篇
  1999年   810篇
  1998年   812篇
  1997年   827篇
  1996年   667篇
  1995年   657篇
  1994年   615篇
  1993年   568篇
  1992年   526篇
  1991年   494篇
  1990年   506篇
  1989年   496篇
  1988年   473篇
  1987年   553篇
  1986年   488篇
  1985年   604篇
  1984年   649篇
  1983年   595篇
  1982年   531篇
  1981年   581篇
  1980年   471篇
  1979年   463篇
  1978年   434篇
  1977年   433篇
  1976年   384篇
  1975年   378篇
  1974年   376篇
  1973年   385篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Comminution, agglutination, and replenishment processes in a lunar soil are modeled by a system of time dependent, linear differential equations. In the model a soil is subdivided into coarse particle, fine particle, and agglutinate fractions. The relative mass abundance of each component in a mature soil is found to be proportional to rates for the reworking processes. Evolution of the grain size distribution from a fresh ejecta blanket to a mature soil is described quantitatively in terms of the changing proportions of the three soil constituents. If size data is available for an immature soil and a mature soil of the same system, rates for the various processes can be calculated under certain simplifying assumptions.  相似文献   
992.
993.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   
994.
The hydrogeochemistry of methane: Evidence from English groundwaters   总被引:2,自引:0,他引:2  
The presence of methane (CH4) in groundwater is usually only noticed when it rises to high concentrations; to date rather little is known about its production or natural ‘baseline’ conditions. Evidence from a range of non-polluted groundwater environments in England, including water supply aquifers, aquicludes and thermal waters, reveals that CH4 is almost always detectable, even in aerobic conditions. Measurements of potable waters from Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers reveal CH4 concentrations of up to 500 μg/l, but a mean value of < 10 μg/l. However, aquiclude and thermal waters from the Carboniferous and Triassic typically contain in excess of 1500 μg/l. Such high concentrations have so far only been found at redox (Eh) potentials below 0 mV, but in general CH4 concentration and Eh value are poorly correlated. This suggests a lack of thermodynamic equilibrium, which is confirmed by comparing pe values calculated from the redox couple C(4)/C(− 4) with those derived from Eh. Genesis of CH4 appears to occur on two timescales: a rapid if low rate of production from labile carbon in anaerobic microsites in the soil, and a much longer, millennium scale of production from more refractory carbon. Methane is rarely measured in groundwater; there is no single ionic determinand which acts universally as a proxy, but a combination of high HCO3 and low SO4 concentrations, or the reverse, is an indication that high amounts of CH4 may be present.  相似文献   
995.
Although commonly utilized in continental geothermal work, the water-hydrogen and methane-hydrogen isotope geothermometers have been neglected in hydrothermal studies. Here we report δD-CH4 and δD-H2 values from high-temperature, black smoker-type hydrothermal vents and low-temperature carbonate-hosted samples from the recently discovered Lost City Hydrothermal Field. Methane deuterium content is uniform across the dataset at − 120 ± 12‰. Hydrogen δD values vary from − 420‰ to − 330‰ at high-temperature vents to − 700‰ to − 600‰ at Lost City. The application of several geothermometer equations to a suite of hydrothermal vent volatile samples reveals that predicted temperatures are similar to measured vent temperatures at high-temperature vents, and 20-60 °C higher than those measured at the Lost City vents. We conclude that the overestimation of temperature at Lost City reflects 1) that methane and hydrogen are produced by serpentinization at > 110 °C, and 2) that isotopic equilibrium at temperatures < 70 °C is mediated by microbial sulfate reduction. The successful application of hydrogen isotope geothermometers to low-temperature Lost City hydrothermal samples encourages its employment with low-temperature diffuse hydrothermal fluids.  相似文献   
996.
The argon isotope systematics of vein-quartz samples with two different K-reservoirs have been evaluated in detail. Potassium is hosted by ultra-high-salinity fluid inclusions in quartz samples from the Eloise and Osborne iron-oxide-copper-gold (IOCG) deposits of the Mt Isa Inlier, Australia. In contrast, K is hosted by accidentally trapped mica within lower-salinity fluid inclusions of a sample selected from the Railway Fault, 13 km south of the Mt Isa copper mine, Australia. Imprecise apparent ages have been obtained for all of the samples studied and conclusively demonstrate that quartz fluid inclusions are retentive to Ar and have not leaked over billions of years. IOCG samples that host K in fluid inclusions only, have K/Cl values of <1 and the ages obtained represent the maximum ages for mineralization. In contrast, the Railway Fault samples that include accidentally trapped mica have K/Cl values of ?1. Excess 40ArE plus Cl hosted by fluid inclusions, and radiogenic 40ArR plus K, are strongly correlated in these samples and define a plane in 3D 40Ar-36Ar-K-Cl space. In this case, the plane yields an ‘excess 40ArE’ corrected age of ∼1030 Ma that is 100’s of Ma younger than nearby Cu-mineralization at Mt Isa. The age is interpreted to reflect 40Ar-loss from the accidentally trapped mica into the surrounding fluid inclusions, and is not related to the samples’ age of formation. The initial 40Ar/36Ar value of fluid inclusions is widely used to provide information on fluid origin. For the IOCG samples that host K in fluid inclusions only, the initial 40Ar/36Ar values are close to the measured values at every temperature of stepped heating experiments. For samples that include accidentally trapped mica, the correction for post-entrapment radiogenic 40ArR production is significant. Furthermore, because 39ArK present in accidentally trapped mica crystals is released at different temperatures to radiogenic 40ArR lost to the surrounding fluid inclusions, intra-sample 40Ar/36Ar variation cannot be reliably documented. The results demonstrate that noble gas analysis is readily applicable to Proterozoic, or older, samples but that if K-mineral impurities are present within quartz the abundance of K must be determined before calculation of mean 40Ar/36Ar values that are representative of the samples’ initial composition.  相似文献   
997.
The Menilite Shales (Oligocene) of the Polish Carpathians are the source of low-sulfur oils in the thrust belt and some high-sulfur oils in the Carpathian Foredeep. These oil occurrences indicate that the high-sulfur oils in the Foredeep were generated and expelled before major thrusting and the low-sulfur oils in the thrust belt were generated and expelled during or after major thrusting. Two distinct organic facies have been observed in the Menilite Shales. One organic facies has a high clastic sediment input and contains Type-II kerogen. The other organic facies has a lower clastic sediment input and contains Type-IIS kerogen. Representative samples of both organic facies were used to determine kinetic parameters for immiscible oil generation by isothermal hydrous pyrolysis and S2 generation by non-isothermal open-system pyrolysis. The derived kinetic parameters showed that timing of S2 generation was not as different between the Type-IIS and -II kerogen based on open-system pyrolysis as compared with immiscible oil generation based on hydrous pyrolysis. Applying these kinetic parameters to a burial history in the Skole unit showed that some expelled oil would have been generated from the organic facies with Type-IIS kerogen before major thrusting with the hydrous-pyrolysis kinetic parameters but not with the open-system pyrolysis kinetic parameters. The inability of open-system pyrolysis to determine earlier petroleum generation from Type-IIS kerogen is attributed to the large polar-rich bitumen component in S2 generation, rapid loss of sulfur free-radical initiators in the open system, and diminished radical selectivity and rate constant differences at higher temperatures. Hydrous-pyrolysis kinetic parameters are determined in the presence of water at lower temperatures in a closed system, which allows differentiation of bitumen and oil generation, interaction of free-radical initiators, greater radical selectivity, and more distinguishable rate constants as would occur during natural maturation. Kinetic parameters derived from hydrous pyrolysis show good correlations with one another (compensation effect) and kerogen organic-sulfur contents. These correlations allow for indirect determination of hydrous-pyrolysis kinetic parameters on the basis of the organic-sulfur mole fraction of an immature Type-II or -IIS kerogen.  相似文献   
998.
Previous studies on waters of a streamlet in the Vosges Mountains (Eastern France) have shown that strontium and rare earth elements (REE) mainly originate from preferential dissolution of apatite during weathering. However, stream water REE patterns normalized to apatite are still depleted in the light REE (LREE, La-Sm) pointing to the presence of an additional LREE depleting process. Vegetation samples are strongly enriched in LREE compared to stream water and their Sr and Nd isotopic compositions are comparable with those of apatite and stream water. Thus, the preferential LREE uptake by vegetation might lead to an additional LREE depletion of surface runoff in the forested catchment. Mass balance calculations indicate, that the yearly LREE uptake by vegetation is comparable with the LREE export by the streamlet and, therefore, might be an important factor controlling LREE depletion in river water. This is underlined by the observation that rivers from arctic and boreal regions with sparse vegetation appear to be less depleted in LREE than rivers from tropical environments or boreal environments with a dense vegetation cover.  相似文献   
999.
Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.  相似文献   
1000.
We report new chemical and isotopic data from 26 volcanic and geothermal gases, vapor condensates, and thermal water samples, collected along the Nicaraguan volcanic front. The samples were analyzed for chemical abundances and stable isotope compositions, with a focus on nitrogen abundances and isotope ratios. These data are used to evaluate samples for volatile contributions from magma, air, air-saturated water, and the crust. Samples devoid of crustal contamination (based upon He isotope composition) but slightly contaminated by air or air-saturated water are corrected using N2/Ar ratios in order to obtain primary magmatic values, composed of contributions from upper mantle and subducted hemipelagic sediment on the down-going plate. Using a mantle endmember with δ15N = −5‰ and N2/He = 100 and a subducted sediment component with δ15N = +7‰ and N2/He = 10,500, the average sediment contribution to Nicaraguan volcanic and geothermal gases was determined to be 71%. Most of the gases were dominated by sediment-derived nitrogen, but gas from Volcán Mombacho, the southernmost sampling location, had a mantle signature (46% from subducted sediment, or 54% from the mantle) and an affinity with mantle-dominated gases discharging from Costa Rica localities to the south. High CO2/N2 exc. ratios (N2 exc. is the N2 abundance corrected for contributions from air) in the south are similar to those in Costa Rica, and reflect the predominant mantle wedge input, whereas low ratios in the north indicate contribution by altered oceanic crust and/or preferential release of nitrogen over carbon from the subducting slab. Sediment-derived nitrogen fluxes at the Nicaraguan volcanic front, estimated by three methods, are 7.8 × 108 mol N/a from 3He flux, 6.9 × 108 mol/a from SO2 flux, and 2.1 × 108 and 1.3 × 109 mol/a from CO2 fluxes calculated from 3He and SO2, respectively. These flux results are higher than previous estimates for Central America, reflecting the high sediment-derived volatile contribution and the high nitrogen content of geothermal and volcanic gases in Nicaragua. The fluxes are also similar to but higher than estimated hemipelagic nitrogen inputs at the trench, suggesting addition of N from altered oceanic basement is needed to satisfy these flux estimates. The similarity of the calculated input of N via the trench to our calculated outputs suggests that little or none of the subducted nitrogen is being recycled into the deeper mantle, and that it is, instead, returned to the surface via arc volcanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号