首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   41篇
  国内免费   8篇
测绘学   15篇
大气科学   65篇
地球物理   283篇
地质学   360篇
海洋学   98篇
天文学   116篇
综合类   6篇
自然地理   116篇
  2023年   5篇
  2021年   9篇
  2020年   15篇
  2019年   19篇
  2018年   24篇
  2017年   27篇
  2016年   27篇
  2015年   22篇
  2014年   21篇
  2013年   52篇
  2012年   46篇
  2011年   40篇
  2010年   27篇
  2009年   52篇
  2008年   45篇
  2007年   50篇
  2006年   44篇
  2005年   33篇
  2004年   46篇
  2003年   17篇
  2002年   38篇
  2001年   19篇
  2000年   34篇
  1999年   28篇
  1998年   30篇
  1997年   14篇
  1996年   19篇
  1995年   13篇
  1994年   15篇
  1993年   7篇
  1992年   21篇
  1991年   11篇
  1990年   15篇
  1989年   13篇
  1988年   11篇
  1987年   13篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   12篇
  1975年   7篇
  1974年   7篇
  1970年   4篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
991.
南海西部越南岸外MD05-2901孔晚第四纪450 ka以来黏土矿物和氧同位素的高分辨率分析表明, 伊利石、绿泥石和高岭石含量表现出明显的冰期-间冰期旋回变化, 而蒙脱石含量呈现频率更高的周期性变化. 物源分析表明, MD05-2901孔黏土矿物中的蒙脱石主要由巽他陆架及其主要源区印度尼西亚岛弧提供, 伊利石和绿泥石主要由湄公河和红河提供, 而高岭石则主要由珠江提供. 高岭石/(伊利石+绿泥石)比值的变化显示强烈的100 ka偏心率周期, 指示了冰盖驱动的冬季风演化; 而蒙脱石含量的高频变化除了具有冰盖驱动的41 ka斜率周期以外, 还具有23和19 ka岁差周期、以及13 ka半岁差周期, 指示了热带驱动的夏季风演化. 东亚冬季风的演化基本上与冰期-间冰期旋回一致, 冰期时强盛, 间冰期时明显减弱; 而夏季风的演化则与北半球低纬夏季日射量吻合较好, 日射量高时强盛, 低时减弱. 研究认为, 高纬冰盖和低纬热带分别驱动了晚第四纪东亚冬季风和夏季风的演化, 反映了东亚季风演化的双重和独立的驱动机制.  相似文献   
992.
Geodetically-detected episodes of slow slip appear in several subduction zones to be accompanied by bursts of low-frequency coherent noise known as seismic tremor, but whether a single physical process governs this association or even whether slow slip is invariably accompanied by tremor remains unresolved. Detailed analysis of broadband seismic data spanning a slow slip episode in the Hikurangi subduction zone, New Zealand, reveals that slow slip was accompanied by distinct reverse-faulting microearthquakes, rather than tremor. The timing, location, and faulting style of these earthquakes are consistent with stress triggering down-dip of the slow slip patch, either on the subduction interface or just below it. These results indicate that tremor is not ubiquitous during subduction zone slow slip, and that slow slip in subduction zone environments is capable of triggering high-frequency earthquakes near the base of the locked subduction thrust. In this and other locations (Hawaii, Boso Peninsula) where slow slip is accompanied by triggered microseismicity, the estimated upper extent of the slow slip is shallower (less than ~ 20 km) than in those locations from which tremor has been reported. This suggests that ambient temperature- or pressure-dependent factors govern the character of the seismic response to slow slip on subduction thrusts and other large faults, with rheological or lithological conditions at shallow depths triggering high-frequency microearthquakes and those at greater depths triggering seismic tremor.  相似文献   
993.
The effect of a fracture on the propagation of seismic waves can be represented in terms of the normal compliance BN and tangential compliance BT of the fracture. If   BN / BT = 1  for all fractures, the effective elastic stiffness tensor of an isotropic background containing an arbitrary orientation distribution of fractures is orthotropic (i.e., has three orthogonal planes of mirror symmetry) in the long-wave limit. However, deviations from orthotropy may occur if   BN / BT   differs significantly from unity and this can cause the principal axes of the P -wave NMO ellipse and of the variation in the PP -reflection amplitude as a function of azimuth, to deviate from the fast and slow polarization direction of a vertically propagating S -wave. Simple models of a fracture in terms of a planar distribution of cracks suggest that   BN / BT ≈ 1  for dry fractures. However, naturally occurring fractures often exhibit mineralization in the form of bridges between opposing faces of the fracture. The presence of such bridges leads to significant departures of   BN / BT   from unity.  相似文献   
994.
The River Frome was sampled at sub-daily sampling interval, with additional storm sampling, through an annual cycle. Samples were analysed for total phosphorus (TP), soluble reactive phosphorus (SRP), total oxidisable nitrogen (TON) and dissolved reactive silicon (Si). The resulting data set was artificially decimated to mimic sampling frequencies from 12 h to monthly time interval. Monthly sampling interval resulted in significant errors in the estimated annual TP and SRP load of up to 35% and 28% respectively, and the resulting data sets were insufficient to observe peaks in P concentration in response to storm events. Weekly sampling reduced the maximum percentage errors in annual load estimate to 15.4% and 6.5%. TON and silicon concentrations were less variable with changing river flow, and monthly sampling was sufficient to predict annual load estimates to within 10%. However, to investigate within-river nutrient dynamics and behaviour, it is suggested that a weekly sampling interval would be the minimum frequency required for TON and Si studies, and daily sampling would be a minimum requirement to adequately investigate phosphorus dynamics. The loss in nutrient-concentration signal due to reduced sampling interval is presented. Hysteresis in the nutrient concentration/flow relationships for all 32 storm events during the study period were modelled and seasonal patterns discussed to infer nutrient sources and behaviour. The high-resolution monitoring in this study identified, for the first time, major peaks in phosphorus concentration in winter that coincide with sudden falls in air temperature, and was associated with biofilm breakdown. This study has shown that to understand complex catchment nutrient processes, accurately quantify nutrient exports from catchments, and observe changes in water quality as a result of nutrient mitigation efforts over time, it is vital that the newly emerging field-based automated sampler/analyzer technologies begin to be deployed, to allow for routine high-resolution monitoring of our rivers in the future.  相似文献   
995.
To the extent that sea surface temperature and colors can be considered passive tracers, their motions can be tracked to estimate the current velocities, or a conservation equation can be invoked to relate their temporal variations to the velocities. We investigate the latter, the so-called tracer inversion problem, with a particular focus on (1) the conditions under which the problem can be rendered over-determined for least squares solutions, (2) the possibility of using the tracer conservation equation within the “velocity projection” framework to estimate subsurface current profiles in shallow coastal waters, and (3) the accuracy of the tracer inversion calculation in terms of the data resolution and noise. The velocity projection framework refers to relating surface motion, either measured directly or made visible by tracers, to the subsurface current motion through the equations of motion. The accuracy of the tracer inversion calculation is quantified in terms of the spatial and temporal resolution of the tracer distribution. In the presence of irreducible tracer noise, the accuracy of the inversion rapidly degrades, and it is shown that the inversion with velocity projection can help improve accuracy. The tracer inversion method developed in this study is applied to the satellite sea surface temperature data, and the velocity result is compared to the velocity measurements made with the shore-based HF Coastal Current Radar. The potential of improving the velocity estimation with the present approach is indicated.  相似文献   
996.
Interpretation of the detailed patterns of ocean-floor transforms revealed by satellite altimetry enables the creation of the Indian Ocean to be described quantitatively as four consecutive plate-tectonic regimes separated at 200, 136, 89 and 43 Ma. Each regime is reversed in turn by keeping transform termini coincident and colinear until conjugate points on the margins of pre-existing plates regain their pre-regime integrity. Progressive elimination of the Indian Ocean, demonstrable as a smooth computer animation ( http://www.kartoweb.itc.nl/gondwana ), leads to a refined re-assembly of the continental fragments of central Gondwana that is substantiated by new geological data. A sequence of Euler interval poles that describes the dispersal of the Gondwana fragments, time-calibrated against available magnetic anomaly data, is given. The model requires a mid-Cretaceous position for India's southern tip about 1000 km south of Madagascar, prior to India's rapid northward migration.  相似文献   
997.
998.
West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.  相似文献   
999.
Lake metabolism scales with lake morphometry and catchment conditions   总被引:1,自引:0,他引:1  
We used a comparative data set for 25 lakes in Denmark sampled during summer to explore the influence of lake morphometry, catchment conditions, light availability and nutrient input on lake metabolism. We found that (1) gross primary production (GPP) and community respiration (R) decline with lake area, water depth and drainage ratio, and increase with algal biomass (Chl), dissolved organic carbon (DOC) and total phosphorus (TP); (2) all lakes, especially small with less incident light, and forest lakes with high DOC, have negative net ecosystem production (NEP < 0); (3) daily variability of GPP decreases with lake area and water depth as a consequence of lower input of nutrients and organic matter per unit water volume; (4) the influence of benthic processes on free water metabolic measures declines with increasing lake size; and (5) with increasing lake size, lake metabolism decreases significantly per unit water volume, while depth integrated areal rates remain more constant due to a combination of increased light and nutrient limitation. Overall, these meta-parameters have as many significant but usually weaker relationships to whole-lake and benthic metabolism as have TP, Chl and DOC that are directly linked to photosynthesis and respiration. Combining water depth and Chl to predict GPP, and water depth and DOC to predict R, lead to stronger multiple regression models accounting for 57–63% of the variability of metabolism among the 25 lakes. It is therefore important to consider differences in lake morphometry and catchment conditions when comparing metabolic responses of lakes to human impacts.  相似文献   
1000.
Since natural fractures in petroleum reservoirs play an important role in determining fluid flow during production, knowledge of the orientation and density of fractures is required to optimize production. This paper outlines the underlying theory and implementation of a fast and efficient algorithm for upscaling a Discrete Fracture Network (DFN) to predict the fluid flow, elastic and seismic properties of fractured rocks. Potential applications for this approach are numerous and include the prediction of fluid flow, elastic and seismic properties for fractured reservoirs, model‐based inversion of seismic Amplitude Versus Offset and Azimuth (AVOA) data and the optimal placement and orientation of infill wells to maximize production. Given that a single fracture network may comprise hundreds of thousands of individual fractures, the sheer size of typical DFNs has tended to limit their practical applications. This paper demonstrates that with efficient algorithms, the utility of Discrete Fracture Networks can be extended far beyond mere visualization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号