首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9258篇
  免费   368篇
  国内免费   135篇
测绘学   177篇
大气科学   755篇
地球物理   2221篇
地质学   3270篇
海洋学   860篇
天文学   1307篇
综合类   42篇
自然地理   1129篇
  2022年   36篇
  2021年   119篇
  2020年   165篇
  2019年   170篇
  2018年   223篇
  2017年   215篇
  2016年   260篇
  2015年   213篇
  2014年   273篇
  2013年   515篇
  2012年   317篇
  2011年   435篇
  2010年   397篇
  2009年   510篇
  2008年   432篇
  2007年   445篇
  2006年   375篇
  2005年   316篇
  2004年   320篇
  2003年   314篇
  2002年   270篇
  2001年   217篇
  2000年   244篇
  1999年   187篇
  1998年   172篇
  1997年   141篇
  1996年   157篇
  1995年   140篇
  1994年   132篇
  1993年   107篇
  1992年   112篇
  1991年   77篇
  1990年   108篇
  1989年   88篇
  1988年   91篇
  1987年   100篇
  1986年   90篇
  1985年   121篇
  1984年   136篇
  1983年   127篇
  1982年   107篇
  1981年   84篇
  1980年   61篇
  1979年   78篇
  1978年   71篇
  1977年   66篇
  1976年   69篇
  1975年   74篇
  1974年   60篇
  1973年   69篇
排序方式: 共有9761条查询结果,搜索用时 15 毫秒
991.
Near liquidus experiments on peridotite and other olivine normative compositions from 1.7 to 6 GPa confirm the applicability of exchange-based empirical models of Ni and Co partitioning between olivine and silicate liquids with compositions close to the liquidus of peridotite. Given that most estimates of lunar bulk composition are peridotitic, the partitioning models thus lend themselves to calculation of olivine compositions produced during the early stages of magma ocean crystallization. Calculation of olivine compositions produced by fractional crystallization of a model lunar magma ocean, initially 700 km deep, reveals a prominent maximum in Ni concentration versus fraction crystallized or Mg’ (molar MgO/(MgO + FeO)), but a pattern of monotonically increasing Co concentration. These patterns qualitatively match the puzzling patterns of Ni and Co concentrations observed in lunar rocks in which forsteritic olivines in magnesian suite cumulates have lower Ni and Co abundances than do less magnesian olivines from low-Ti mare basalts, and olivines from the ferroan anorthosite suite (FAS) have lower Ni, but similar Co to mare basalt olivines.The Ni and Co abundances in olivines from the magnesian suite cumulates can be reconciled in terms of fractional crystallization of a deep magma ocean which initially produces a basal dunite comprised of the hottest and most magnesian olivine overlain by an olivine-orthopyroxene (harzburgite) layer that is in turn overlain by an upper zone of plagioclase-bearing cumulates. The ultramafic portion of the cumulate pile overturns sending the denser harzburgite layer, which later becomes a portion of the green glass source region, to the bottom of the cumulate pile with Ni- and Co-rich olivine. Meanwhile, the less dense, but hottest, most magnesian olivines with much lower Ni and Co abundances are transported upward to the base of the plagioclase-bearing cumulates where subsequent heat transfer leads to melting of mixtures of primary dunite, norite, and gabbronorite with KREEP (a K-REE-P enriched component widely believed to be derived from the very latest stage magma ocean liquid). These hybrid melts have Al2O3, Ni, and Co abundances and Mg’ appropriate for parent magmas of the magnesian suite. Ni and Co abundances in the FAS are consistent with either direct crystallization from the magma ocean or crystallization of melts of primary dunite-norite mixtures without KREEP.  相似文献   
992.
Here we search for evidence of the existence of a sub-chondritic 142Nd/144Nd reservoir that balances the Nd isotope chemistry of the Earth relative to chondrites. If present, it may reside in the source region of deeply sourced mantle plume material. We suggest that lavas from Hawai’i with coupled elevations in 186Os/188Os and 187Os/188Os, from Iceland that represent mixing of upper mantle and lower mantle components, and from Gough with sub-chondritic 143Nd/144Nd and high 207Pb/206Pb, are favorable samples that could reflect mantle sources that have interacted with an Early-Enriched Reservoir (EER) with sub-chondritic 142Nd/144Nd.High-precision Nd isotope analyses of basalts from Hawai’i, Iceland and Gough demonstrate no discernable 142Nd/144Nd deviation from terrestrial standards. These data are consistent with previous high-precision Nd isotope analysis of recent mantle-derived samples and demonstrate that no mantle-derived material to date provides evidence for the existence of an EER in the mantle.We then evaluate mass balance in the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd. The Nd isotope systematics of EERs are modeled for different sizes and timing of formation relative to ε143Nd estimates of the reservoirs in the μ142Nd = 0 Earth, where μ142Nd is ((measured 142Nd/144Nd/terrestrial standard 142Nd/144Nd)−1 * 10−6) and the μ142Nd = 0 Earth is the proportion of the silicate Earth with 142Nd/144Nd indistinguishable from the terrestrial standard. The models indicate that it is not possible to balance the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd unless the μ142Nd = 0 Earth has a ε143Nd within error of the present-day Depleted Mid-ocean ridge basalt Mantle source (DMM). The 4567 Myr age 142Nd-143Nd isochron for the Earth intersects μ142Nd = 0 at ε143Nd of +8 ± 2 providing a minimum ε143Nd for the μ142Nd = 0 Earth. The high ε143Nd of the μ142Nd = 0 Earth is confirmed by the Nd isotope systematics of Archean mantle-derived rocks that consistently have positive ε143Nd.If the EER formed early after solar system formation (0-70 Ma) continental crust and DMM can be complementary reservoirs with respect to Nd isotopes, with no requirement for significant additional reservoirs. If the EER formed after 70 Ma then the μ142Nd = 0 Earth must have a bulk ε143Nd more radiogenic than DMM and additional high ε143Nd material is required to balance the Nd isotope systematics of the Earth.  相似文献   
993.
Fluids from the ultramafic-hosted Lost City hydrothermal field were analyzed for total dissolved organic carbon and dissolved organic acids. Formate (36-158 μmol/kg) and acetate (1-35 μmol/kg) concentrations are higher than in other fluids from unsedimented hydrothermal vents, and are a higher ratio of the total dissolved organic carbon than has been found in most marine geothermal systems. Isotopic evidence is consistent with an abiotic formation mechanism for formate, perhaps during serpentinization processes in the sub-surface. Further support comes from previous studies where the abiological formation of low molecular weight organic acids has been shown to be thermodynamically favorable during hydrothermal alteration of olivine, and laboratory studies in which the reduction of carbon dioxide to formate has been confirmed. As the second most prevalent carbon species after methane, formate may be an important substrate to microbial communities in an environment where dissolved inorganic carbon is limited. Acetate is found in locations where sulfate reduction is believed to be important and is likely to be a microbial by-product, formed either directly by autotrophic metabolic activity or indirectly during the fermentative degradation of larger organic molecules. Given the common occurrence of exposed ultramafic rocks and active serpentinization within the worlds ocean basins, the abiotic formation of formate may be an important process supporting life in these high pH environments and may have critical implications to understanding the organic precursors from which life evolved.  相似文献   
994.
Mechanisms of iron oxide transformations in hydrothermal systems   总被引:2,自引:0,他引:2  
Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H2-rich hydrothermal conditions (T = 100-250 °C, ) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 °C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 °C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 °C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to and (2) non-redox transformation of hematite and to magnetite.  相似文献   
995.
Shield-stage high-MgO alkalic lavas from La Palma and El Hierro (Canary Islands) have been characterized for their O-Sr-Nd-Os-Pb isotope compositions and major-, trace-, and highly siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances. New data are also reported for associated evolved rocks, and entrained xenoliths. Clear differences in Pd/Ir and isotopic ratios for high Os (>50 ppt) lavas from El Hierro (δ18Oolivine = 5.17 ± 0.08‰; 87Sr/86Sr = 0.7029 to 0.7031; εNd = +5.7 to +7.1; 187Os/188Os = 0.1481 to 0.1750; 206Pb/204Pb = 19.1 to 19.7; Pd/Ir = 6 ± 3) versus those from La Palma (δ18Oolivine = 4.87 ± 0.18‰; 87Sr/86Sr = 0.7031 to 0.7032; εNd = +5.0 to +6.4; 187Os/188Os = 0.1421 to 0.1460; 206Pb/204Pb = 19.5 to 20.2; Pd/Ir = 11 ± 4) are revealed from the dataset.Crustal or lithospheric assimilation during magma transport cannot explain variations in isotopic ratios or element abundances of the lavas. Shallow-level crystal-liquid fractionation of olivine, clinopyroxene and associated early-crystallizing minerals (e.g., spinel and HSE-rich phases) controlled compatible element and HSE abundances; there is also evidence for sub-aerial degassing of rhenium. High-MgO lavas are enriched in light rare earth elements, Nb, Ta, U, Th, and depleted in K and Pb, relative to primitive mantle abundance estimates, typical of HIMU-type oceanic island basalts. Trace element abundances and ratios are consistent with low degrees (2-6%) of partial melting of an enriched mantle source, commencing in the garnet stability field (?110 km). Western Canary Island lavas were sulphur undersaturated with estimated parental melt HSE abundances (in ppb) of 0.07 ± 0.05 Os, 0.17 ± 0.16 Ir, 0.34 ± 0.32 Ru, 2.6 ± 2.5 Pt, 1.4 ± 1.2 Pd, 0.39 ± 0.30 Re. These estimates indicate that Canary Island alkali basalts have lower Os, Ir and Ru, but similar Pt, Pd and Re contents to Hawai’ian tholeiites.The HIMU affinities of the lavas, in conjunction with the low δ18Oolivine and high 206Pb/204Pb for La Palma, and elevated 187Os/188Os for El Hierro implies melting of different proportions of recycled oceanic crust and lithosphere. Our preferred model to explain isotopic differences between the islands is generation from peridotitic mantle metasomatised by <10% pyroxenite/eclogite made from variable portions of similar aged recycled oceanic crust and lithosphere. The correspondence of radiogenic 206Pb/204Pb, 187Os/188Os, elevated Re/Os and Pt/Os, and low-δ18O in western Canary Island lavas provides powerful support for recycled oceanic crust and lithosphere to generate the spectrum of HIMU-type ocean island basalt signatures. Persistence of geochemical heterogeneities throughout the stratigraphies of El Hierro and La Palma demonstrate long-term preservation of these recycled components in their mantle sources over relatively short-length scales (∼50 km).  相似文献   
996.
<正>Considerable controversy exists over whether or not extensive glaciation occurred during the global Last Glacial Maximum(LGM) in the Larsemann Hills.In this study we use the in situ produced cosmogenic nuclide ~(10)Be(half life 1.51 Ma) to provide minimum exposure ages for six bedrock samples and one erratic boulder in order to determine the last period of deglaciation in the Larsemann Hills and on the neighboring Bolingen Islands.Three bedrock samples taken from Friendship Mountain(the highest peak on the Mirror Peninsula,Larsemann Hills;~2 km from the ice sheet) have minimum exposure ages ranging from 40.0 to 44.7 ka.The erratic boulder from Peak 106(just at the edge of the ice sheet) has a younger minimum exposure age of only 8.8 ka.The minimum exposure ages for two bedrock samples from Blundell Peak(the highest peak on Stornes Peninsula,Larsemann Hills;~2 km from the ice sheet) are about 17 and 18 ka.On the Bolingen Islands(southwest to the Larsemann Hills;~10 km from the ice sheet),the minimum exposure age for one bedrock sample is similar to that at Friendship Mountain(i.e.,44 ka).Our results indicate that the bedrock exposure in the Larsemann Hills and on the neighboring Bolingen Islands commenced obviously before the global LGM(i.e.,20-22 ka),and the bedrock erosion rates at the Antarctic coast areas may be obviously higher than in the interior land.  相似文献   
997.
David PETERS 《地球学报》2010,31(Z1):55-56
Currently there is no ready reference source of pterosaur pedes available to match ichnotaxa to potential trackmakers. While presently recognized pterosaur ichnites all indicate a plantigrade pes and a quadrupedal mode of locomotion, those configurations were not basal or universal.  相似文献   
998.
Gypsum (CaSO4·2H2O) deposits from a range of sedimentary environments at Guerrero Negro, Baja California Sur, Mexico were investigated for microscale texture and composition in order to differentiate features formed under substantial microbial influence from those for which microbial effects were relatively minor or absent. Gypsum deposits were classified according to their sedimentary environment, textures, crystal habit, brine composition and other geochemical factors. The environments studied included subaqueous sediments in anchialine pools and in solar salterns, as well as subsurface sediments of mudflats and saltpans. Gypsum that developed in the apparent absence of biofilms included crystals precipitated in the water column and subsedimentary discs that precipitated from phreatic brines. Subsedimentary gypsum developed in sabkha environments exhibited a sinuous microtexture and poikilitically enclosed detrital particles. Water column precipitates had euhedral prismatic habits and extensive penetrative twinning. Gypsum deposits influenced by biofilms included bottom nucleated crusts and gypsolites developing in anchialine pools and saltern ponds. Gypsum precipitating within benthic biofilms, and in biofilms within subaerial sediment surfaces provided compelling evidence of biological influences on crystal textures and habits. This evidence included irregular, high relief surface textures, accessory minerals (S°, Ca-carbonate, Sr/Ca-sulfate and Mg-hydroxide) and distinctive crystal habits such as equant forms and crystals having distorted prism faces.  相似文献   
999.
Geomorphic, stratigraphic, geotechnical, and biogeographic evidence indicate that failure of a Pleistocene ice dam between 15.5 and 26 ka generated a megaflood from Glacial Lake Atna down the Matanuska Valley. While it has long been recognized that Lake Atna occupied ≥ 9000 km2 of south-central Alaska's Copper River Basin, little attention has focused on the lake's discharge locations and behaviors. Digital elevation model and geomorphic analyses suggest that progressive lowering of the lake level by decanting over spillways exposed during glacial retreat led to sequential discharges down the Matanuska, Susitna, Tok, and Copper river valleys. Lake Atna's size, ∼ 50 ka duration, and sequential connection to four major drainages likely made it a regionally important late Pleistocene freshwater refugium. We estimate a catastrophic Matanuska megaflood would have released 500–1400 km3 at a maximum rate of ≥ 3 × 106 m3 s− 1. Volumes for the other outlets ranged from 200 to 2600 km3 and estimated maximum discharges ranged from 0.8 to 11.3 × 106 m3 s− 1, making Lake Atna a serial generator of some of the largest known freshwater megafloods.  相似文献   
1000.
Field studies supplemented by petrographic analyses clearly reveal complete preservation of ophiolite suite from Port Blair (11°39′N: 92°45′E) to Chiriyatapu (11°30′24″N: 92°42′30″E) stretch of South Andaman. The ophiolite suite reveals serpentinite at the base which is overlain unconformably by cumulate ultramafic-mafic members with discernible cumulus texture and igneous layering. Basaltic dykes are found to cut across the cumulate ultramafic-mafic members. The succession is capped by well exposed pillow basalts interlayered with arkosic sediments. Olivine from the basal serpentinite unit are highly magnesian (Fo80.1–86.2). All clinopyroxene analyses from cumulate pyroxenite, cumulate gabbro and basaltic dyke are discriminated to be ‘Quad’ and are uniformly restricted to the diopside field. Composition of plagioclase in different lithomembers is systematically varying from calcic to sodic endmembers progressively from cumulate pyroxenite to pillow basalt through cumulate gabbro and basaltic dyke. Plagioclase phenocrysts from basaltic dyke are found to be distinctly zoned (An60.7-An35.3) whereas groundmass plagioclase are relatively sodic (An33-An23.5). Deduced thermobarometric data from different lithomembers clearly correspond to the observed preservation of complete ophiolite suite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号