首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   9篇
测绘学   12篇
大气科学   31篇
地球物理   99篇
地质学   183篇
海洋学   19篇
天文学   66篇
自然地理   26篇
  2023年   2篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   18篇
  2013年   27篇
  2012年   18篇
  2011年   33篇
  2010年   36篇
  2009年   26篇
  2008年   21篇
  2007年   12篇
  2006年   27篇
  2005年   12篇
  2004年   20篇
  2003年   6篇
  2002年   15篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
81.
In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.  相似文献   
82.
Acta Geotechnica - The evaluation of impact forces exerted by flowing granular masses on rigid obstacles is of fundamental importance for the assessment of the associated risk and for the design of...  相似文献   
83.
The fine-scale heterogeneity of porous media affects the large-scale transport of solutes and contaminants in groundwater and it can be reproduced by means of several geostatistical simulation tools. However, including the available geological information in these tools is often cumbersome. A hierarchical simulation procedure based on a binary tree is proposed and tested on two real-world blocks of alluvial sediments, of a few cubic meters volume, that represent small-scale aquifer analogs. The procedure is implemented using the sequential indicator simulation, but it is so general that it can be adapted to various geostatistical simulation tools, improving their capability to incorporate geological information, i.e., the sedimentological and architectural characterization of heterogeneity. When compared with a standard sequential indicator approach on bi-dimensional simulations, in terms of proportions and connectivity indicators, the proposed procedure yields reliable results, closer to the reference observations. Different ensembles of three-dimensional simulations based on different hierarchical sequences are used to perform numerical experiments of conservative solute transport and to obtain ensembles of equivalent pore velocity and dispersion coefficient at the scale length of the blocks (meter). Their statistics are used to estimate the impact of the variability of the transport properties of the simulated blocks on contaminant transport modeled on bigger domains (hectometer). This is investigated with a one-dimensional transport modeling based on the Kolmogorov-Dmitriev theory of branching stochastic processes. Applying the proposed approach with diverse binary trees and different simulation settings provides a great flexibility, which is revealed by the differences in the breakthrough curves.  相似文献   
84.
85.
86.
We present laboratory experiments to study the consequence of the rupture of a subducting slab on the deep geometry of the subduction zone. In our experiments, slab break‐off occurs after the entrance of buoyant material at trench causing a slowing down of the subduction and producing an increase of the shortening rate and a transient episode of subduction dip reversal. We discuss the potential application of these processes to the recent collisional evolution of the Alps proposing that the rupture of the slab produced a reorganization of the belt with a transition from one sided to a doubly vergent orogen.  相似文献   
87.
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.  相似文献   
88.
In this work, the effects of coupled hydromechanical (consolidation) processes associated with shield tunneling excavation in soft clays are investigated with particular attention to the prediction of ground movements at the ground surface. A series of 2d FE analyses have been carried out in parametric form in order to investigate the effects of tunnel excavation velocity relative to the soil consolidation rate and the hydraulic boundary conditions at the tunnel boundary. The shield advancement process has been simulated with a simplified procedure incorporating both volume loss and ovalization of the tunnel section. In order to investigate the relative importance of soil consolidation during the excavation process, different characteristic times for the tunnel face advancement and for the consolidation process around the tunnel have been considered, for the two limiting conditions of fully permeable liner and impervious liner. The potential damage induced by the tunnel excavation on existing structures, based on computed ground surface distortions and horizontal deformations, has been found to vary significantly with time during the consolidation process. The results of the simulations allowed to obtain useful information on the minimum tunnel face advancement speed for which the assumption of fully undrained conditions for the soil during the excavations is acceptable, as well as on the speed range for which solving the fully coupled hydromechanical problem is necessary.  相似文献   
89.
We present a hydrodynamical code for cosmological simulations which uses the piecewise parabolic method (PPM) to follow the dynamics of the gas component and an N -body particle–mesh algorithm for the evolution of the collisionless component. The gravitational interaction between the two components is regulated by the Poisson equation which is solved by a standard fast Fourier transform (FFT) procedure. In order to simulate cosmological flows we have introduced several modifications to the original PPM scheme which we describe in detail. Various tests of the code are presented including adiabatic expansion, single and multiple pancake formation and three-dimensional cosmological simulations with initial conditions based on the cold dark matter scenario.  相似文献   
90.
Geological mapping coupled with structural investigations carried out in the Voltri Massif (eastern Ligurian Alps, Italy) provide new data for the interpretation of the tectonic context controlling main fabric development during exhumation of its high-pressure core. The Voltri Massif is here interpreted as a c. 30 km-long eclogite-bearing, asymmetric dome formed by the progressive verticalisation of the regional, second-phase mylonitic foliation developed during retrogressive greenschist metamorphic conditions. In this light, the exhumation history is driven by a ductile-to-brittle extensional process, operating through low-angle, top-to-the-W multiple detachment systems. A Late Eocene–Early Oligocene age for this extensional episode is proposed on the basis of structural correlations, stratigraphic and radiometric constraints. In this scenario, the Voltri Massif is interpreted as an extensional domain developed to accommodate the Late Eocene–Early Oligocene arching of the Western Alps–Northern Apennines orogenic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号