首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   9篇
测绘学   12篇
大气科学   31篇
地球物理   97篇
地质学   184篇
海洋学   19篇
天文学   66篇
自然地理   27篇
  2023年   2篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   18篇
  2013年   26篇
  2012年   17篇
  2011年   33篇
  2010年   36篇
  2009年   26篇
  2008年   21篇
  2007年   12篇
  2006年   27篇
  2005年   12篇
  2004年   20篇
  2003年   6篇
  2002年   14篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
排序方式: 共有436条查询结果,搜索用时 0 毫秒
91.
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131–150, 2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez’s method for near-circular motion under the $J_{2}$ perturbation is transformed into linear. Moreover, the method reveals to be competitive with two very popular element methods derived from the Kustaanheimo-Stiefel and Sperling-Burdet regularizations.  相似文献   
92.
93.
In spite of the increasing diffusion of tunnel boring machines, conventional tunnelling is still preferred for economic reasons in case of short tunnels, unconventional cross sections or irregular tunnel trajectories. In conventional tunnelling, the mechanical response of the tunnel front is a main concern and, when tunnels are excavated in cohesive soils, this is dominated by the time factor, related to geometry, to the mean excavation rate and to the hydro-mechanical properties of the materials involved. This is particularly evident during excavation standstill: front displacements progressively increase with time and, in many cases, the system response under long-term conditions becomes unstable. In conventional tunnelling, a common technique employed to improve the system response (under both short- and long-term conditions) is the installation of fibreglass tubes within the advance core. In this paper, the mechanical response of both unreinforced and reinforced deep tunnel fronts in cohesive soils is experimentally analysed. In particular, the results of a series of 1 g small-scale tests, taking into account both the influence of the excavation rate (the unloading time) on the system response and the evolution with time of the tunnel face displacements, induced by a rapid reduction in the horizontal stress applied on the tunnel face, are reported.  相似文献   
94.
The ostracod assemblages from sediment core TTR17-401G recovered from the Melilla cold-water coral mound field in the eastern Alboran Sea spanning the last 13 ka are analysed quantitatively, taxonomically and palaeoecologically. The core can be subdivided in three distinct assemblages linked to environmental shifts during the Younger Dryas and the Bølling–Allerød interstadial. A total of 9 ostracod species is recorded, Paracypris polita is dominant throughout the core. Common accessory taxa Cytherella robusta, Echinocythereis vidua and Macromckenziea ligustica characterize the well-oxygenated ostracod assemblage 2 affected by the Younger Dryas. Favourable growth conditions for ostracods during the latter are indicated by large-sized Krithe praetexta specimens.  相似文献   
95.
Quartz silt is widespread in terrestrial sediments [1]. Its ubiquity has led to its neglect as a geomaterial, and studies of silt as such are relatively rare, but it presents an interesting and continuing petrological problem. Is silt a specific geological material, is it defined by a formation process, and a set of size parameters? In the world of clastic quartz sedimentology there are obvious mode sizes; there is a sand mode at around 300–500 μm and a silt mode, an order of magnitude smaller, at 30–50 μm. Are these both defined by specific geological processes?  相似文献   
96.
Geological environments, such as petroleum reservoirs, normally exhibit physical discontinuities, for example, fractures and faults. Because of the reduced thickness of these discontinuities, finite element formulations with strong discontinuity have been applied to the numerical modelling of geological environments. Until now, two relevant characteristics of petroleum reservoirs have not been addressed by these formulations. The first is the pore pressure jump in the direction normal to a discontinuity in a fluid‐mechanical coupling condition, which is present primarily in sealing faults owing to the contrast of permeability with the porous medium. The absence of this jump can affect the prediction of the deformability of a physical discontinuity. Furthermore, reservoir models frequently use coarse meshes. Thus, the method used to evaluate the pore pressure in the discontinuity may exhibit a strong dependence relative to the mesh refinement. Based on these characteristics, in this study, a formulation of an enriched finite element for application to coupled fluid‐mechanical problems with pre‐existing physical discontinuities saturated by a single fluid is presented. The formulation employs discontinuous interpolation functions and enables the reproduction of jumps of displacement and pore pressure associated with a discontinuity inside the element without the need to discretise it. An approximation to estimate the pore pressure in the discontinuity was developed, one which seeks to minimise the influence of refinement. The element's response is verified by comparison with a one‐dimensional analytical solution and simple examples that are simulated using commercial software. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
97.
In this work, the effects of coupled hydromechanical (consolidation) processes associated with shield tunneling excavation in soft clays are investigated with particular attention to the prediction of ground movements at the ground surface. A series of 2d FE analyses have been carried out in parametric form in order to investigate the effects of tunnel excavation velocity relative to the soil consolidation rate and the hydraulic boundary conditions at the tunnel boundary. The shield advancement process has been simulated with a simplified procedure incorporating both volume loss and ovalization of the tunnel section. In order to investigate the relative importance of soil consolidation during the excavation process, different characteristic times for the tunnel face advancement and for the consolidation process around the tunnel have been considered, for the two limiting conditions of fully permeable liner and impervious liner. The potential damage induced by the tunnel excavation on existing structures, based on computed ground surface distortions and horizontal deformations, has been found to vary significantly with time during the consolidation process. The results of the simulations allowed to obtain useful information on the minimum tunnel face advancement speed for which the assumption of fully undrained conditions for the soil during the excavations is acceptable, as well as on the speed range for which solving the fully coupled hydromechanical problem is necessary.  相似文献   
98.
The Šambron–Kamenica Zone is situated on the northern margin of the Levočské vrchy mountains and Šarišskà vrchovina Highland, where the Central Carpathian Paleogene joins the Pieniny Klippen Belt. Sandstone outcrops in this area. From Cretaceous to Late Oligocene in age, these sediments suggest transport directions from S and SE. The heavy mineral assemblages of this sandstone include Cr-spinel grains, mainly displaying types II and III alpine-peridotite affinities, and are representative of Ocean Island Basalt volcanism. A sample from Upper Eocene sediments at Vit’az shows a clear change in Cr-spinel composition, which turns out to have types I and II peridotite affinities, and to derive from arc and Middle Ocean Ridge Basalt volcanism, with sediment transport directions from SW and WSW. These data indicate major variations in the Upper Eocene tectonic setting, giving constraints to paleogeographic reconstruction of the Slovak Central Carpathians.  相似文献   
99.
100.
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号