首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   61篇
  国内免费   15篇
测绘学   74篇
大气科学   193篇
地球物理   427篇
地质学   622篇
海洋学   181篇
天文学   287篇
综合类   7篇
自然地理   181篇
  2022年   10篇
  2021年   24篇
  2020年   24篇
  2019年   29篇
  2018年   47篇
  2017年   56篇
  2016年   66篇
  2015年   37篇
  2014年   59篇
  2013年   115篇
  2012年   75篇
  2011年   86篇
  2010年   84篇
  2009年   102篇
  2008年   107篇
  2007年   81篇
  2006年   69篇
  2005年   66篇
  2004年   63篇
  2003年   51篇
  2002年   53篇
  2001年   38篇
  2000年   48篇
  1999年   28篇
  1998年   32篇
  1997年   27篇
  1996年   24篇
  1995年   25篇
  1994年   15篇
  1993年   25篇
  1992年   22篇
  1991年   19篇
  1990年   24篇
  1989年   16篇
  1988年   18篇
  1987年   18篇
  1986年   15篇
  1985年   15篇
  1984年   24篇
  1983年   27篇
  1982年   19篇
  1981年   16篇
  1980年   17篇
  1977年   10篇
  1976年   11篇
  1975年   12篇
  1974年   10篇
  1973年   9篇
  1972年   19篇
  1971年   12篇
排序方式: 共有1972条查询结果,搜索用时 515 毫秒
51.
52.
Low-molecular-weight (LMW) aqueous organic acids were generated from six oil-prone source rocks under hydrous-pyrolysis conditions. Differences in total organic carbon-normalized acid generation are a function of the initial thermal maturity of the source rock and the oxygen content of the kerogen (OI). Carbon-isotope analyses were used to identify potential generation mechanisms and other chemical reactions that might influence the occurrence of LMW organic acids. The generated LMW acids display increasing 13C content as a function of decreasing molecular weight and increasing thermal maturity. The magnitudes of observed isotope fractionations are source-rock dependent. These data are consistent with δ13C values of organic acids presented in a field study of the San Joaquin Basin and likely reflect the contributions from alkyl-carbons and carboxyl-carbons with distinct δ13C values. The data do not support any particular organic acid generation mechanism. The isotopic trends observed as a function of molecular weight, thermal maturity, and rock type are not supported by either generation mechanisms or destructive decarboxylation. It is therefore proposed that organic acids experience isotopic fractionation during generation consistent with a primary kinetic isotope effect and subsequently undergo an exchange reaction between the carboxyl carbon and dissolved inorganic carbon that significantly influences the carbon isotope composition observed for the entire molecule. Although generation and decarboxylation may influence the δ13C values of organic acids, in the hydrous pyrolysis system described, the nondestructive, pH-dependent exchange of carboxyl carbon with inorganic carbon appears to be the most important reaction mechanism controlling the δ13C values of the organic acids.  相似文献   
53.
Results are presented for round one of a new international proficiency testing programme designed for microprobe laboratories involved in the routine analysis of silicate minerals. The sample used for this round was TB-1, a basaltic glass fused and prepared by the USGS. Thirty nine laboratories contributed data to this round, the majority of major element results being undertaken by EPMA and the majority of trace elements by LA-ICP-MS. Assigned values were derived from the median of results produced by nine selected laboratories that analysed powdered material by conventional ICP-MS, INAA and XRF techniques using bulk powders of the sample. Submitted microprobe results were evaluated using a target precision calculated using the Horwitz function, adopting the same criteria as those used for "applied" geochemistry laboratories in the companion GeoPT proficiency testing programme for laboratories involved in the routine bulk analysis of silicate rocks. An evaluation of results from participating microprobe laboratories indicated that overall, data were compatible with this precision function. A comparison between the performance of bulk and microprobe techniques used in the analysis of the basaltic glass showed remarkably good agreement, with significant bias only observed for the major oxide MgO.  相似文献   
54.
The last British Ice Sheet: growth, maximum extent and deglaciation   总被引:2,自引:0,他引:2  
The growth, maximum lateral extent and deglaciation of the last British Ice Sheet (BIS) has been reconstructed using sediment, faunal and stable isotope methods from a sedimentary record recovered from the Barra Fan, north-west Scotland. During a phase of ice sheet expansion postdating the early "warmth" of Marine Isotope Stage 3 (MIS 3), ice rafting events, operating with a cyclicity of approximately 1500 years, are interspersed between warm, carbonate-rich interstadials operating with a strong Dansgaard-Oeschger (D-O) cyclicity. The data suggest that the BIS expanded westwards to the outer continental shelf break shortly after 30 Ky BP (before present) and remained there until about 15 Ky BP. Within MIS 2, as the ice sheet grew to its maximum extent, the pronounced periodicities which characterize MIS 3 are lost from the record. The exact timing of the Last Glacial Maximum is difficult to define in this record; but maxima in Neogloboquadrina pachyderma (sinistral) Ø18O are observed between 21-17 Ky BP. A massive discharge of ice-rafted detritus, coincident with Heinrich event 1, is observed at about 16 Ky BP. Deglaciation of the margin is complete by about 15 Ky BP and surface waters warm rapidly after this date.  相似文献   
55.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
56.
Detailed soil erosion studies bene?t from the ability to quantify the magnitude of erosion over time scales appropriate to the process. An inventory balance for 7Be was used to calculate sediment erosion in a 30·73 m2 plot during a series of runoff‐producing thunderstorms occurring over three days at the Deep Loess Research Station in Treynor, Iowa, USA. The inventory balance included determination of the pre‐ and post‐storm 7Be inventories in the soil, the atmospheric in?ux of 7Be during the event, and pro?les of the 7Be activity in the soil following the atmospheric deposition. The erosion calculated in the plot using the 7Be inventory balance was 0·058 g cm?2, which is 23 per cent of the annual average erosion determined using 137Cs inventories. The calculated erosion from the mass balance is similar to the 0·059 g cm?2 of erosion estimated from the amount of sediment collected at the outlet of the 6 ha ?eld during the study period and the delivery ratio (0·64). The inventory balance of 7Be provides a new means for evaluating soil erosion over the time period most relevant to quantifying the prediction of erosion from runoff. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
57.
This paper is focused on the role of boron coordination in determining the 11B/10B isotopic fractionation between melt/glass and biotite at magmatic temperatures. For this purpose, three evolved volcanic rocks from Roccastrada, Mt. Amiata, and Mt. Cimini belonging to the Neogene-Quaternary magmatism of central Italy were studied. In these samples, the measured boron biotite-glass partition coefficient ranges between 0.004 and 0.011, indicating that boron behaves as an incompatible element during biotite crystallization. The 11B magic-angle spinning nuclear magnetic resonance (NMR) spectra reveal the presence of trigonal BO3/2 units, tetrahedral BO4/2 sites, and three-coordinated BO2/2O species containing one nonbridging oxygen. The relative contributions of these different boron sites were estimated by spectral deconvolution, and it was observed that the fraction of trigonally coordinated boron decreases with increasing K2O concentration in the glass. The 11B/10B isotopic fractionation between biotite and melt/glass was observed to be large even at magmatic temperatures and was found to be 1.0066 (Roccastrada sample), 1.00535 (Mt. Amiata sample), and 1.00279 (Mt. Cimini sample). Fractionation is mostly related to the relative amount of trigonal and tetrahedral boron sites in the glass network rather than to other processes, including the speciation of hydrous species in the glass structure. The measured α values are significantly higher than the calculated ones obtained using the reduced partition function ratios (RPFRs) for B(OH)3 and B(OH)4 as reported by Kakihana et al. (1977) and the abundance of trigonal and tetrahedral boron obtained by 11B NMR spectra. Furthermore, a nonlinear relationship is observed between the percentage of BO4 in the glass structure and the measured 1000lnα, suggesting that the approximation of monomeric B(OH)3 and B(OH)4 species contributions through ideal mixing in calculating the RPFRs in polyanions (Oi et al., 1989) probably does not apply to silicate glasses.The large B isotopic fractionation measured between glass and biotite and its dependence on the boron coordination in the glass are a limitation to the use of δ11B in the mineral to characterize magmas. Nonetheless, the high incompatible behavior of boron in the most common magmatic minerals rules out that fractional crystallization significantly modified the B isotopic composition of the melt.  相似文献   
58.
59.
We describe finite-difference approximations to the equations of 2-D electromagnetic induction that permit discrete boundaries to have arbitrary geometrical relationships to the nodes. This allows finite-difference modelling with the flexibility normally ascribed to finite-element modelling. Accuracy is demonstrated by comparison with finite-element computations. We also show that related approximations lead to substantially improved accuracy in regions of steep, but not discontinuous, conductivity gradient.  相似文献   
60.
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号