首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   37篇
  国内免费   5篇
测绘学   18篇
大气科学   41篇
地球物理   163篇
地质学   217篇
海洋学   57篇
天文学   102篇
综合类   3篇
自然地理   91篇
  2024年   3篇
  2022年   3篇
  2021年   5篇
  2020年   13篇
  2019年   19篇
  2018年   18篇
  2017年   7篇
  2016年   27篇
  2015年   14篇
  2014年   22篇
  2013年   40篇
  2012年   27篇
  2011年   55篇
  2010年   44篇
  2009年   43篇
  2008年   28篇
  2007年   28篇
  2006年   31篇
  2005年   24篇
  2004年   20篇
  2003年   25篇
  2002年   22篇
  2001年   18篇
  2000年   16篇
  1999年   14篇
  1998年   11篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   9篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1968年   2篇
排序方式: 共有692条查询结果,搜索用时 15 毫秒
11.
In this paper we investigate the dynamical behaviour of radiation-driven winds, specifically winds that arise when Compton scattering transfers momentum from the radiation field to the gas flow. Such winds occur during strong X-ray bursts from slowly accreting neutron stars, and also may be driven from the inner regions of a black hole or neutron star accretion disc when the mass transfer rate is very high. By linearizing the radiation hydrodynamic equations around steady spherical outflow, we evaluate the time-dependent response of these winds to perturbations introduced at their inner boundaries. We find that although radiation-driven winds are generally stable, they act as mechanical filters that should produce quasi-periodic oscillations or peaked noise in their radiation output when perturbations force them stochastically. This behaviour may underlie the photospheric oscillations observed in some strong Type I X-ray bursts.  相似文献   
12.
13.
14.
为了确定控制末次冰消期的机制以及引起冰消期事件的顺序,最重要的是获得应用于大陆和海洋两者的气候记录的时间结构。放射性碳测年已经广泛应用于海洋沉积物的日历测年,但它是建立在表层水的表观年龄 (相对于大气层来说 )保持不变的假设上的。这里我们提出了北大西洋 40° N以北的表层水的表观年龄 (或储层年龄 )在过去 20 ka中的变化证据,在两个岩心中,我们发现了在 Heinrich 1 (15 ka BP)结束的地方,表层水表观年龄比今天大 1230± 600 a和 1940± 750 a,在新仙女木冷期结束的地方比今天大 820± 430 a 和 1010± 340 a。在 Bolling_Allerod暖期,两个老的储层年龄之间,表层水表观年龄可以与目前的值进行比较。我们的研究结果证实冰心年代学和整个冰消期的北大西洋海洋记录是一致的。因此,这表示了 40° N以北的北大西洋海洋碳测年需要作这些明显可变效应的校正。  相似文献   
15.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   

16.
It is the goal of remote sensing to infer information about objects or a natural process from a remote location. This invokes that uncertainty in measurement should be viewed as central to remote sensing. In this study, the uncertainty associated with water stages derived from a single SAR image for the Alzette (G.D. of Luxembourg) 2003 flood is assessed using a stepped GLUE procedure. Main uncertain input factors to the SAR processing chain for estimating water stages include geolocation accuracy, spatial filter window size, image thresholding value, DEM vertical precision and the number of river cross sections at which water stages are estimated. Initial results show that even with plausible parameter values uncertainty in water stages over the entire river reach is 2.8 m on average. Adding spatially distributed field water stages to the GLUE analysis following a one-at-a-time approach helps to considerably reduce SAR water stage uncertainty (0.6 m on average) thereby identifying appropriate value ranges for each uncertain SAR water stage processing factor. For the GLUE analysis a Nash-like efficiency criterion adapted to spatial data is proposed whereby acceptable SAR model simulations are required to outperform a simpler regression model based on the field-surveyed average river bed gradient. Weighted CDFs for all factors based on the proposed efficiency criterion allow the generation of reliable uncertainty quantile ranges and 2D maps that show the uncertainty associated with SAR-derived water stages. The stepped GLUE procedure demonstrated that not all field data collected are necessary to achieve maximum constraining. A possible efficient way to decide on relevant locations at which to sample in the field is proposed. It is also suggested that the resulting uncertainty ranges and flood extent or depth maps may be used to evaluate 1D or 2D flood inundation models in terms of water stages, depths or extents. For this, the extended GLUE approach, which copes with the presence of uncertainty in the observed data, may be adopted.  相似文献   
17.
18.
Advanced warning of extreme sea level events is an invaluable tool for coastal communities, allowing the implementation of management policies and strategies to minimise loss of life and infrastructure damage. This study is an initial attempt to apply a dynamical coupled ocean–atmosphere model to the prediction of seasonal sea level anomalies (SLA) globally for up to 7 months in advance. We assess the ability of the Australian Bureau of Meteorology’s operational seasonal dynamical forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA), to predict seasonal SLA, using gridded satellite altimeter observation-based analyses over the period 1993–2010 and model reanalysis over 1981–2010. Hindcasts from POAMA are based on a 33-member ensemble of seasonal forecasts that are initialised once per month for the period 1981–2010. Our results show POAMA demonstrates high skill in the equatorial Pacific basin and consistently exhibits more skill globally than a forecast based on persistence. Model predictability estimates indicate there is scope for improvement in the higher latitudes and in the Atlantic and Southern Oceans. Most characteristics of the asymmetric SLA fields generated by El-Nino/La Nina events are well represented by POAMA, although the forecast amplitude weakens with increasing lead-time.  相似文献   
19.
Interactions between fold and thrust belt deformation, foreland flexure and surface mass transport are investigated using a newly developed mathematical model incorporating fully dynamic coupling between mechanics and surface processes. The mechanical model is two dimensional (plane strain) and includes an elasto‐visco‐plastic rheology. The evolving model is flexurally compensated using an elastic beam formulation. Erosion and deposition at the surface are treated in a simple manner using a linear diffusion equation. The model is solved with the finite element method using a Lagrangian scheme with marker particles. Because the model is particle based, it enables straightforward tracking of stratigraphy and exhumation paths and it can sustain very large strain. It is thus ideally suited to study deformation, erosion and sedimentation in fold–thrust belts and foreland basins. The model is used to investigate how fold–thrust deformation and foreland basin development is influenced by the non‐dimensional parameter , which can be interpreted as the ratio of the deformation time scale to the time scale for surface processes. Large values of imply that the rate of surface mass transport is significantly greater than the rate of deformation. When , the rates of surface processes are so slow that one observes a classic propagating fold–thrust belt with well‐developed wedge top basins and a largely underfilled foreland flexural depression. Increasing causes (1) deposition to shift progressively from the wedge top into the foredeep, which deepens and may eventually become filled, (2) widespread exhumation of the fold–thrust belt, (3) reduced rates of frontal thrust propagation and possible attainment of a steady‐state orogen width and (4) change in the style and dynamics of deformation. Together, these effects indicate that erosion and sedimentation, rather than passively responding to tectonics, play an active and dynamic role in the development of fold–thrust belts and foreland basins. Results demonstrate that regional differences in the relative rates of surface processes (e.g. because of different climatic settings) may lead to fold–thrust belts and foreland basins with markedly different characteristics. Results also imply that variations in the efficiency of surface processes through time (e.g., because of climate change or the emergence of orogens above sea level) may cause major temporal changes in orogen and basin dynamics.  相似文献   
20.
Summary. The observations of the periods of free oscillation of the Earth provide direct constraints on the density distribution in the Earth. These in turn allow constraints to be placed on the size of departures from a state of adiabaticity and chemical homogeneity. These departures are quantified in terms of a stratification parameter '8' first introduced as an index of chemical homogeneity. The resolving power theory of Backus & Gilbert is used to determine the ability of the observed free oscillations to constrain η in the lower mantle and outer core. The results suggest that the outer core is not strongly chemically stratified although a significantly thermally stable core cannot be excluded. The free oscillations also apparently require a compositional difference between the inner and outer cores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号