首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2819篇
  免费   120篇
  国内免费   35篇
测绘学   101篇
大气科学   230篇
地球物理   659篇
地质学   904篇
海洋学   268篇
天文学   494篇
综合类   6篇
自然地理   312篇
  2023年   12篇
  2022年   8篇
  2021年   47篇
  2020年   57篇
  2019年   75篇
  2018年   82篇
  2017年   88篇
  2016年   114篇
  2015年   91篇
  2014年   94篇
  2013年   185篇
  2012年   109篇
  2011年   158篇
  2010年   132篇
  2009年   169篇
  2008年   133篇
  2007年   127篇
  2006年   135篇
  2005年   103篇
  2004年   114篇
  2003年   93篇
  2002年   70篇
  2001年   68篇
  2000年   61篇
  1999年   44篇
  1998年   50篇
  1997年   33篇
  1996年   35篇
  1995年   27篇
  1994年   30篇
  1993年   21篇
  1992年   34篇
  1991年   21篇
  1990年   28篇
  1989年   21篇
  1988年   16篇
  1987年   21篇
  1986年   15篇
  1985年   29篇
  1984年   24篇
  1983年   31篇
  1982年   27篇
  1981年   24篇
  1980年   14篇
  1979年   16篇
  1978年   18篇
  1977年   15篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
排序方式: 共有2974条查询结果,搜索用时 15 毫秒
831.
832.
A new method has been developed to separate the compositional variations in ocean island basalts into those that result from variations in source composition and from the melting process itself. The approach depends on correlations between isotope ratios, which can only come from source inhomogeneities, and elemental concentrations. Analysis of three data sets shows that the inhomogeneities beneath Theistareykir, in NE Iceland, Kilauea and Pitcairn can be produced by subduction of oceanic islands and volcanic ridges. The thicknesses of the lithosphere on which such islands were constructed and potential temperatures of the plumes that produced them can be estimated from the geochemical observations. Model ages are harder to determine, though simple assumptions give about 400 Ma for the Theistareykir source and 1.2 Ga for Kilauea. The model may also provide a physical explanation for the commonly used isotopic classification of ocean island basalts, with the isotopic composition changing from HIMU through EMII to EMI as the melt fraction increases. These results have been obtained from a small number of data sets obtained from ocean island basalts erupted in small areas during short time intervals. More such observations are needed to discover whether geochemical observations from other islands are consistent with the same model.  相似文献   
833.
834.
835.
836.
We continue previous research on the limb flare of 30 April, 1980, 20:20 UT, observed in X-rays by several instruments aboard the Solar Maximum Mission (SMM). It is shown quantitatively that the flare originated in an emerging magnetically confined kernel (diameter ~ 20″) which existed for about ten to fifteen minutes, and from which energetic electrons streamed, in at least two injections, into a previously existing complicated magnetic loop system thus forming a less bright but extended and long-lived tongue. The tongue had a length of ~ 35 000 km and lasted ~ 90 min in X-rays (~ 10 keV); at lower energies (~ 0.7 keV) it was larger (~ 80 000 km) and lasted longer. The total number of energetic electrons (≈ 1037) initially present in the kernel is of the same order as the number present in the tongue after the kernel's decline. This gives evidence that the energetic electrons in the tongue originated mainly in the kernel. The electron number densities in the kernel and tongue at maximum brightness were ~ 4.5 × 1011 and ~ 1 × 1011 cm#X2212;3, respectively. During the first eight minutes of its existence the tongue was hotter than the kernel, but it cooled off gradually. Its decline in intensity and temperature was exponential; energy was lost by radiation and by conduction through the footpoints of the loop system. These footpoints have a cross-section of only ~ 3 × 106 km2. This small value, as well as photographs in a Civ UV emission line, suggests a highly filamentary structure of the system; this is further supported by the finding that the tongue had a ‘filling factor’ of ~ 10#X2212;2. Several faint X-ray brightenings (? 0.005 of the flare's maximum intensity) were observed at various locations along the solar limb for several hours before and after the flare. At ~ 30 min before the flare's onset a faint (? 0.02) flare precursor occurred, coinciding in place and shape with the flare. First the kernel precursor was brightest but the tongue precursor increased continuously in brightness and was the brightest part of the precursor some 10–15 min after the first visibility of the kernel precursor, until the start of the main flare. This suggests (weak) continuous electron acceleration in the tongue during a period of at least 30 min. The main flare was caused by strong emergence of magnetic field followed by two consecutive field line reconnections and accelerations in a small loop system, causing footpoint heating. Subsequently plasma streamed (convectively) into a pre-existing system of larger loops, forming the tongue.  相似文献   
837.
838.
839.
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号