首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1876篇
  免费   88篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   383篇
地质学   673篇
海洋学   172篇
天文学   331篇
综合类   6篇
自然地理   209篇
  2023年   12篇
  2022年   7篇
  2021年   39篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   75篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   96篇
  2009年   118篇
  2008年   97篇
  2007年   96篇
  2006年   87篇
  2005年   60篇
  2004年   65篇
  2003年   54篇
  2002年   41篇
  2001年   32篇
  2000年   39篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   22篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   14篇
  1988年   9篇
  1987年   10篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1994条查询结果,搜索用时 12 毫秒
81.
82.
Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO3 demonstrate that lueshite does not adopt the same space group (Pbma; #57) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P4/mbm to \(Pm\overline{3} m\) above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO3, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm.  相似文献   
83.
The marine shelf areas in subtropical and tropical regions represent only 35% of the total shelf areas globally, but receive a disproportionately large amount of water (65%) and sediment (58%) discharges that enter such environments. Small rivers and/or streams that drain the mountainous areas in these climatic zones deliver the majority of the sediment and nutrient inputs to these narrow shelf environments; such inputs often occur as discrete, episodic introductions associated with storm events. To gain insight into the linked biogeochemical behavior of subtropical/tropical mountainous watershed-coastal ocean ecosystems, this work describes the use of a buoy system to monitor autonomously water quality responses to land-derived nutrient inputs and physical forcing associated with local storm events in the coastal ocean of southern Kaneohe Bay, Oahu, Hawaii, USA. The data represent 2.5 years of near-real time observations at a fixed station, collected concurrently with spatially distributed synoptic sampling over larger sections of Kaneohe Bay. Storm events cause most of the fluvial nutrient, particulate, and dissolved organic carbon inputs to Kaneohe Bay. Nutrient loadings from direct rainfall and/or terrestrial runoff produce an immediate increase in the N:P ratio of bay waters up to values of 48 and drive phytoplankton biomass growth. Rapid uptake of such nutrient subsidies by phytoplankton causes rapid declines of N levels, return to N-limited conditions, and subsequent decline of phytoplankton biomass over timescales ranging from a few days to several weeks, depending on conditions and proximity to the sources of runoff. The enhanced productivity may promote the drawing down of pCO2 and lowering of surface water column carbonate saturation states, and in some events, a temporary shift from N to P limitation. The productivity-driven CO2 drawdown may temporarily lead to air-to-sea transfer of atmospheric CO2 in a system that is on an annual basis a source of CO2 to the atmosphere due to calcification and perhaps heterotrophy. Storms may also strongly affect proximal coastal zone pCO2 and hence carbonate saturation state due to river runoff flushing out high pCO2 soil and ground waters. Mixing of the CO2-charged water with seawater causes a salting out effect that releases CO2 to the atmosphere. Many subtropical and tropical systems throughout the Pacific region are similar to Kaneohe Bay, and our work provides an important indication of the variability and range of CO2 dynamics that are likely to exist elsewhere. Such variability must be taken into account in any analysis of the direction and magnitude of the air?Csea CO2 exchange for the integrated coastal ocean, proximal and distal. It cannot be overemphasized that this research illustrates several examples of how high frequency sampling by a moored autonomous system can provide details about ecosystem responses to stochastic atmospheric forcing that are commonly missed by traditional synoptic observational approaches. Finally, the work exemplifies the utility of combining synoptic sampling and real-time autonomous observations to elucidate the biogeochemical and physical responses of coastal subtropical/tropical coral reef ecosystems to climatic perturbations.  相似文献   
84.

Background  

Given the importance of highly reactive oxygen species (hROS) as reactants in a wide range of biological, photochemical, and environmental systems there is an interest in detection and quantification of these species. The extreme reactivity of the hROS, which includes hydroxyl radicals, presents an analytical challenge. 3'-(p-Aminophenyl) fluorescein (APF) is a relatively new probe used for measuring hROS. Here, we further evaluate the use of APF as a method for the detection of hydroxyl radicals in particle suspensions.  相似文献   
85.
The pressure dependence of melt viscosities on the join diopside-albite has been studied using falling-sphere viscometry. The five melt compositions investigated are: diopside, Ab25Di75, Ab50Di50, Ab75Di25 and albite. Experiments were performed at 1500° and 1600°C and at pressures of 5, 10, 15, 20 and 25 kbar. The positive and negative pressure dependence of the viscosity of diopside and albite, respectively, were confirmed. All intermediate compositions show an initial decrease in viscosity with increasing pressure; however, melt of Ab25Di75 composition passes through a minimum viscosity at approximately 12 kbar and 1600°C. This behavior is analogous to the variation in the viscosity of water with pressure at low temperature.

It is suggested that the three-dimensional, fully polymerized, albite structure dominates flow at low pressures. With increasing pressure, disruption of this structure and decrease in the average size of the flow units leads to domination by the diopside structure. The variation in viscosity with composition along the join at one atmosphere can be adequately modelled using the and (1965) configurational entropy model with an additional two-lattice configurational entropy of mixing term. The pressure dependence of viscosity in the diopside-albite system, however, cannot be predicted by the model, because there is an absence of information on the pressure dependence of the model parameters.

It is probable that relatively polymerized magmas (e.g. rhyolites to SiO2-saturated basalts) show a negative pressure dependence of viscosity to depths where they originate in the lower crust or upper mantle. In contrast, the most depolymerized, naturally-occurring melts, such as strongly SiO2-undersaturated basalts and picrites, may exhibit a viscosity minimum. The viscosity of these melts may be sufficiently high at depths within the upper mantle to inhibit their segregation, rise and eventual eruption at the surface.  相似文献   

86.
87.
The six Zhoukoudian (ZKD) Locality 1 Homo erectus specimens derive from stratigraphic levels 11–3 with a geochronological span of approximately 0.3 Ma. This paper introduces the history of the ZKD endocasts and presents data on their morphological features and linear dimensions in order to evaluate variability in the sample over time and in the broader context of human brain evolution using a comparative sample of African and other Asian H. erectus fossils and modern Chinese males. The ZKD brains are very similar in their morphological characteristics, but there are also significant but subtle changes involving expansion of the frontal and occipital lobe breadths that correlate with the geochronology. The same is not true for general endocranial volume. The ZKD brains, together with other Asian and African H. erectus specimens, have low height dimensions and short parietal chords that distinguish them from the modern Chinese. Furthermore, the lack of geographical patterning in the fossil sample, as determined by Principal Components Analysis, provides no support for arguments advocating the splitting of H. erectus into separate taxa.  相似文献   
88.
There are plenty of faults that show evidence that they are active. Most of the valley’s floor is occupied by unconsolidated Karewa deposits, in particular on the south–southwest of the Kashmir Valley. In such situations, geomorphic data can reveal the location of active faults. Accordingly, we tried to identify geomorphic indices in SW of the Kashmir Valley (Veshav, Rambiara, and Romushi drainage basins), which revealed the area to be potentially tectonically active. This active faulting was further substantiated by drainage anomalies and field investigations, which provides evidence for an emergent out-of-sequence NE-dipping active reverse fault (identified first time on ground) named the Balapur Fault (BF). The BF can be traced over at least 40 km along the southwest side of the Kashmir Valley. The existence of the active Balapur Fault and of two other inferred faults north of the Panjal Thrust or Murree Thrust presents a picture of a more complex strain-partitioning regime in the Kashmir Himalayas than is usually visualized.  相似文献   
89.
The gradient flux technique, which measures the gas transfer velocity (k), and new observational techniques that probe turbulence in the aqueous surface boundary layers were conducted over a tidal cycle in the Plum Island Sound, Massachusetts. Efforts were aimed at testing new methods in an estuarine system and to determine if turbulence created by tidal velocity can be responsible for the short-term variability ink. Measurements were made during a low wind day, at a site with tidal excursions of 2.7 m and a range in tidal velocity of nearly 1 m s−1. Estimates ofk using the gradient flux technique were made simultaneously with the Controlled Flux Technique (CFT), infrared imagery, and high-resolution turbulence measurements, which measure the surface renewal rate, turbulent scales, and the turbulent dissipation rate, respectively. All measurements were conducted from a small mobile catamaran that minimizes air- and water-side flow distortions. Infrared imagery showed considerable variability in the turbulent scales that affect air-water gas exchange. These measurements were consistent with variation in the surface renewal rate (range 0.02 to 2 s−1), the turbulent dissipation rate (range 10−7 to 10−5 W kg−1), andk (range 2.2 to 12.0 cm hr−1). During this low wind day, all variables were shown to correlate with tidal speed. Taken collectively our results indicate the promise of these methods for determining short-term variability in gas transfer and near surface turbulence in estuaries and demonstrate that turbulent transport associated with tidal velocity is a potentially important factor with respect to gas exchange in coastal systems.  相似文献   
90.
ZVI‐Clay is an emerging remediation approach that combines zero‐valent iron (ZVI)‐mediated degradation and in situ stabilization of chlorinated solvents. Through use of in situ soil mixing to deliver reagents, reagent‐contaminant contact issues associated with natural subsurface heterogeneity are overcome. This article describes implementation, treatment performance, and reaction kinetics during the first year after application of the ZVI‐Clay remediation approach at Marine Corps Base Camp Lejeune, North Carolina. Primary contaminants included trichloroethylene, 1,1,2,2‐tetrachloroethane, and related natural degradation products. For the field application, 22,900 m3 of soils were treated to an average depth of 7.6 m with 2% ZVI and 3% sodium bentonite (dry weight basis). Performance monitoring included analysis of soil and water samples. After 1 year, total concentrations of chlorinated volatile organic compounds (CVOCs) in soil samples were decreased by site‐wide average and median values of 97% and >99%, respectively. Total CVOC concentrations in groundwater were reduced by average and median values of 81% and >99%, respectively. In several of the soil and groundwater monitoring locations, reductions in total CVOC concentrations of greater than 99.9% were apparent. Further reduction in concentrations of chlorinated solvents is expected with time. Pre‐ and post‐mixing average hydraulic conductivity values were 1.7 × 10?5 and 5.2 × 10?8 m/s, respectively, indicating a reduction of about 2.5 orders of magnitude. By achieving simultaneous contaminant mass depletion and hydraulic conductivity reduction, contaminant flux reductions of several orders of magnitude are predicted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号