首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2507篇
  免费   129篇
  国内免费   45篇
测绘学   83篇
大气科学   189篇
地球物理   519篇
地质学   917篇
海洋学   223篇
天文学   463篇
综合类   6篇
自然地理   281篇
  2023年   13篇
  2022年   9篇
  2021年   41篇
  2020年   52篇
  2019年   69篇
  2018年   82篇
  2017年   85篇
  2016年   117篇
  2015年   89篇
  2014年   86篇
  2013年   170篇
  2012年   100篇
  2011年   141篇
  2010年   113篇
  2009年   151篇
  2008年   123篇
  2007年   127篇
  2006年   114篇
  2005年   83篇
  2004年   102篇
  2003年   80篇
  2002年   57篇
  2001年   53篇
  2000年   57篇
  1999年   42篇
  1998年   45篇
  1997年   32篇
  1996年   35篇
  1995年   26篇
  1994年   16篇
  1993年   16篇
  1992年   28篇
  1991年   25篇
  1990年   19篇
  1989年   17篇
  1988年   13篇
  1987年   16篇
  1986年   7篇
  1985年   21篇
  1984年   28篇
  1983年   25篇
  1982年   21篇
  1981年   17篇
  1980年   15篇
  1979年   12篇
  1978年   17篇
  1977年   14篇
  1976年   8篇
  1975年   10篇
  1974年   11篇
排序方式: 共有2681条查询结果,搜索用时 15 毫秒
921.
The Flinton Group is a greenschist to upper amphibolite facies package of metasediments in southeastern Ontario that was metamorphosed during the Ottawan Orogeny. Thermodynamic modeling of metapelitic mineral assemblages suggests an increase in peak conditions of metamorphism across the 40 km wide study area from 3.5 to 7.9 kbar and 540 to 715 °C. Garnet isopleth thermobarometry applied to the cores of compositionally zoned porphyroblasts reveals remarkably similar P-T conditions of initial crystallization at approximately 3.7–4.0 kbar and 512–520 °C, corresponding to a relatively high geothermal gradient of ca. 34–45 °C km?1. It is inferred from modeling and reaction textures that metamorphism was along Barrovian P-T paths. Major and trace element zoning in garnet from one sample records a complex growth history as evidenced by major and trace element zoning and the distribution of xenotime, allanite and monazite inclusions. High-resolution (6 μm) LA-ICP-MS U-Pb geochronology performed on monazite in the rock matrix and included in the outer 150 μm of garnet rim-ward of a Y annulus revealed an age of 976?±?4 Ma. The age is interpreted to reflect monazite growth at the expense of allanite and apatite late in garnet’s growth history over the P-T interval 4.5–6.8 kbar and 540–640 °C. This new age estimate for near peak metamorphism fits well into the regional framework but is significantly younger than previously reported ages for Ottawan metamorphism. Based on microstructures this new age suggests that compressional tectonics were operating much later in the history of the Grenville of southeastern Ontario than previously thought.  相似文献   
922.
Five great taxonomic extinctions (the so‐called ‘Big Five Mass Extinctions’) are widely recognized in life history, at the end of the Ordovician, Frasnian (Late Devonian), Permian, Triassic and Cretaceous. All of them were originally identified in the marine fossil record and have been interpreted as the result of abrupt global environmental changes. Previous evidence has suggested that terrestrial biota were also subjected to ecological disruption during these events, but it is unknown whether they suffered the same level of large‐scale taxonomic disruption as marine organisms. Here we show that the plant fossil record in fact only provides evidence of two mass taxonomic extinction events, one through the Carboniferous‐Permian transition, the other during middle‐late Permian times. This differs significantly from the mass extinctions recognized in the marine realm and suggests that vascular plants have a special capacity for surviving abrupt environmental changes.  相似文献   
923.
Journal of Paleolimnology - Analysis of the oxygen isotopic composition (δ18O) of sedimentary carbonates in Turquoise Lake (N50.83°, W121.69°, 807 m), southwestern British...  相似文献   
924.
Boundary-Layer Meteorology - We investigate the effects of wind–wave interactions on the surface sea-spray-generation flux. To this end, the Marine Aerosol Tunnel Experiment (MATE2019) was...  相似文献   
925.
Tidal freshwater wetlands (TFW) are situated in the upper estuary in a zone bordered upstream by the nontidal river and downstream by the oligohaline region. Here, discharge of freshwater from the river and the daily tidal pulse from the sea combine to create conditions where TFW develop. TFW are often located where human population density is high, which has led to wetland degradation or destruction. Globally, TFW are largely restricted to the temperate zone where the magnitude of annual river discharge prevents saline waters from penetrating too far inland. The constant input of river water delivers high loads of sediments, dissolved nutrients, and other suspended matter leading to high sedimentation rates and high nutrient levels. Prominent biogeochemical processes include the transformation of nitrogen by bacteria and immobilization of phosphate. A diverse, characteristic vegetation community develops which supports a rich fauna. Biotic diversity is highest in the high marsh areas and decreases in the lower levels where tidal inundation is greatest. Benthic fauna is rather poor in diversity but high in biomass compared to other regions of the estuary. Global climate change is a threat for this system directly by sea level rise, which will cause brackish water to intrude into the fresh system, and indirectly during droughts, which reduce river discharge. Salinity will affect the presence of flora and fauna and facilitates sulfate reduction of organic matter in the soil. Increased decomposition of organic matter following saltwater intrusion can result in a lowering of wetland surface elevation. The papers assembled in this issue focus on how these tidal freshwater wetlands have changed over recent time and how they may respond to new impacts in the future.  相似文献   
926.
An absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 altimeters has been undertaken during the dedicated calibration phase of the Jason-1 mission, in Bass Strait, Australia. The present study incorporates several improvements to the earlier calibration methodology used for Bass Strait, namely the use of GPS buoys and the determination of absolute bias in a purely geometrical sense, without the necessity of estimating a marine geoid. This article focuses on technical issues surrounding the GPS buoy methodology for use in altimeter calibration studies. We present absolute bias estimates computed solely from the GPS buoy deployments and derive formal uncertainty estimates for bias calculation from a single overflight at the 40-45 mm level. Estimates of the absolute bias derived from the GPS buoys is -10 ± 19 mm for T/P and +147 ± 21 mm for Jason-1 (MOE orbit) and +131 ± 21 mm for Jason-1 (GPS orbit). Considering the estimated error budget, our bias values are equivalent to other determinations from the dedicated NASA and CNES calibration sites.  相似文献   
927.
We present global lithological maps of the Vestan surface based on Dawn mission's Visible InfraRed (VIR) Spectrometer acquisitions with a spatial sampling of 200 m. The maps confirm the results obtained with the data set acquired by VIR with a spatial sampling of 700 m, that the reflectance spectra of Vesta's surface are dominated by pyroxene absorptions that can be interpreted within the context of the distribution of howardites, eucrites, and diogenites (HEDs). The maps also partially agree with the ground and Hubble Space Telescope observations: they confirm the background surface being an assemblage of howardite or polymict eucrite, as well as the location of a diogenitic‐rich spot; however, there is no evidence of extended olivine‐rich regions in the equatorial latitudes. Diogenite is revealed on the Rheasilvia basin floor, indicating that material of the lower crust/mantle was exposed. VIR also detected diogenites along the scarp of Matronalia Rupes, and the rims of Severina and a nearby, unnamed crater, and as ejecta of Antonia crater. The diogenite distribution is fully consistent with petrological constraints; although the mapped distribution does not provide unambiguous constraints, it favors the hypothesis of a magma ocean.  相似文献   
928.
Transforming height information that refers to an ellipsoidal Earth reference model, such as the geometric heights determined from GPS measurements or the geoid undulations obtained by a gravimetric geoid solution, from one geodetic reference frame (GRF) to another is an important task whose proper implementation is crucial for many geodetic, surveying and mapping applications. This paper presents the required methodology to deal with the above problem when we are given the Helmert transformation parameters that link the underlying Cartesian coordinate systems to which an Earth reference ellipsoid is attached. The main emphasis is on the effect of GRF spatial scale differences in coordinate transformations involving reference ellipsoids, for the particular case of heights. Since every three-dimensional Cartesian coordinate system ‘gauges’ an attached ellipsoid according to its own accessible scale, there will exist a supplementary contribution from the scale variation between the involved GRFs on the relative size of their attached reference ellipsoids. Neglecting such a scale-induced indirect effect corrupts the values for the curvilinear geodetic coordinates obtained from a similarity transformation model, and meter-level apparent offsets can be introduced in the transformed heights. The paper explains the above issues in detail and presents the necessary mathematical framework for their treatment. An erratum to this article can be found at  相似文献   
929.
We develop a parametric fit to the results of a detailed magnetohydrodynamic (MHD) study of the response of ion escape rates (O+, and ) to strongly varied solar forcing factors, as a way to efficiently extend the MHD results to different conditions. We then use this to develop a second, evolutionary model of solar forced ion escape. We treat the escape fluxes of ion species at Mars as proportional to the product of power laws of four factors - that of the EUV flux Reuv, the solar wind particle density Rρ, its velocity (squared) Rv2, and the interplanetary magnetic field pressure RB2, where forcing factors are expressed in units of the current epoch-averaged values. Our parametric model is: , where ?(i) is the escape flux of ion i. We base our study on the results of just six provided MHD model runs employing large forcing factor variations, and thus construct a successful, first-order parametric model of the MHD program. We perform a five-dimensional least squares fit of this power law model to the MHD results to derive the flux normalizations and the indices of the solar forcing factors. For O+, we obtain the values, 1.73 × 1024 s−1, 0.782, 0.251, 0.382, and 0.214, for ?0, α, β, γ, and δ, respectively. For , the corresponding values are 1.68 × 1024 s−1, −0.393, 0.798, 0.967, and 0.533. For , they are 8.66 × 1022 s−1, −0.427, 1.083, 1.214, and 0.690. The fit reproduces the MHD results to an average error of about 5%, suggesting that the power laws are broadly representative of the MHD model results. Our analysis of the MHD model shows that by itself an increase in REUV enhances O+ loss, but suppresses the escape of and , whereas increases in solar wind (i.e., in , and RB2, with Reuv constant) favors the escape of heavier ions more than light ions. The ratios of escaping ions detectable at Mars today can be predicted by this parametric fit as a function of the solar forcing factors. We also use the parametric model to compute escape rates over martian history. This second parametric model expresses ion escape functions of one variable (per ion), ?(i) = ?0(i)(t/t0)ξ(i). The ξ(i) are linear combinations of the epoch-averaged ion escape sensitivities, which are seen to increase with ion mass. We integrate the and oxygen ion escape rates over time, and find that in the last 3.85 Gyr, Mars would have lost about mbars of , and of water (from O+ and ) from ion escape.  相似文献   
930.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号