首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   24篇
  国内免费   5篇
测绘学   29篇
大气科学   95篇
地球物理   121篇
地质学   217篇
海洋学   28篇
天文学   44篇
综合类   3篇
自然地理   36篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   9篇
  2018年   25篇
  2017年   29篇
  2016年   37篇
  2015年   20篇
  2014年   18篇
  2013年   33篇
  2012年   29篇
  2011年   36篇
  2010年   35篇
  2009年   36篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   3篇
  1977年   6篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1955年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有573条查询结果,搜索用时 10 毫秒
131.
132.
133.
134.
135.
1 IntroductionMapgeneralizationisoneoftheclassicalcartographicprob lems.Allmaps,aregeneralizedrepresentationsofthereality.Generalizationisnecessarytoimprovethedisplayqualityofsmallscalemaps,allowanalysiswithdifferentgradesofdetail;andreducedatastoragere…  相似文献   
136.
Measurements of spectral emittance at wavelengths from 5 to 25 m were carried out for various particulate rocks and minerals (granite, calcite, talk) in dependence on particle size. The experimentally found variation of spectral features with particle size is discussed in terms of photon's mean free path and its dependence on particle size in the wavelength regions characterized by normal and anomalous dispersion, respectively. Moreover, a sample consisting of fine- and coarse-grained material was investigated in order to estimate the chance for mineral identification at conditions relevant to remote sensing of planetary objects. The mixture spectrum comprises characteristic features of both grain size fractions. This implies that the mineralogical composition of the fine-grained fraction also should be accessible by use of high-sensitive spectrometers.  相似文献   
137.
An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.  相似文献   
138.
We studied the internal lake processes that control the spatial distribution and characteristics of modern sediments at the ICDP (International Continental Scientific Drilling Program) deep drilling site in Laguna Potrok Aike, southern Patagonia, Argentina. Sediment distribution patterns were investigated using a dense grid of 63 gravity cores taken throughout the lake basin and 40 additional shoreline samples. Analysis of the surficial sediment distribution points to distinct internal depositional dynamics induced by wind-driven lake internal currents. Distribution maps illustrate that the spatial characteristics of analysed variables are linked to high erosional wave activity. Persistent wave action and littoral erosion along all shores, especially the eastern shore, is caused by prevailing Southern Hemispheric Westerlies. Several sediment variables (grain size, benthic diatoms, total inorganic carbon and calcium) indicate re-suspension of littoral sediment followed by re-distribution to profundal accumulation areas near the eastern shore. Variations within the catchment influence sediment characteristics in the north-eastern bay. That area is characterized by different mineralogical and sedimentological conditions as well as greater accumulation of pollen, inorganic carbon and diatoms. These findings are related to the influence of episodic inflow into this bay. Spatial differences in stable isotope values throughout the lake suggest that ephemeral tributaries around the lake basin may also contribute to the detected spatial sediment variations.  相似文献   
139.
The chemical composition of fluid inclusions in quartz crystals from Alpine fissure veins was determined by combination of microthermometry, Raman spectroscopy, and LA-ICPMS analysis. The veins are hosted in carbonate-bearing, organic-rich, low-grade metamorphic metapelites of the Bündnerschiefer of the eastern Central Alps (Switzerland). This strongly deformed tectonic unit is interpreted as a partly subducted accretionary wedge, on the basis of widespread carpholite assemblages that were later overprinted by lower greenschist facies metamorphism. Veins and their host rocks from two locations were studied to compare several indicators for the conditions during metamorphism, including illite crystallinity, graphite thermometry, stability of mineral assemblages, chlorite thermometry, fluid inclusion solute thermometry, and fluid inclusion isochores. Fluid inclusions are aqueous two-phase with 3.7–4.0 wt% equivalent NaCl at Thusis and 1.6–1.7 wt% at Schiers. Reproducible concentrations of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Al, Mn, Cu, Zn, Pb, As, Sb, Cl, Br, and S could be determined for 97 fluid inclusion assemblages. Fluid and mineral geothermometry consistently indicate temperatures of 320 ± 20 °C for the host rocks at Thusis and of 250 ± 30 °C at Schiers. Combining fluid inclusion isochores with independent geothermometers results in pressure estimates of 2.8–3.8 kbar for Thusis, and of 3.3–3.4 kbar for Schiers. Pressure–temperature estimates are confirmed by pseudosection modeling. Fluid compositions and petrological modeling consistently demonstrate that chemical fluid-rock equilibrium was attained during vein formation, indicating that the fluids originated locally by metamorphic dehydration during near-isothermal decompression in a rock-buffered system.  相似文献   
140.
We investigate statistical distributions of differences in gravitational-lensing deflections between two light rays, the so-called lensing excursion angles. A probability distribution function of the lensing excursion angles, which plays a key role in estimates of lensing effects on angular clustering of objects (such as galaxies, quasi-stellar objects and also the cosmic microwave background temperature map), is known to consist of two components: a Gaussian core and an exponential tail. We use numerical gravitational-lensing experiments in a ΛCDM cosmology for quantifying these two components. We especially focus on the physical processes responsible for generating these two components. We develop a simple empirical model for the exponential tail which allows us to explore its origin. We find that the tail is generated by the coherent lensing scatter by massive haloes with   M > 1014  h −1 M  at   z < 1  and that its exponential shape arises due to the exponential cut-off of the halo mass function at that mass range. On scales larger than 1 arcmin, the tail does not have a practical influence on the lensing effects on the angular clustering. Our model predicts that the coherent scatter may have non-negligible effects on angular clustering at subarcminute scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号