首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   1篇
测绘学   2篇
大气科学   31篇
地球物理   30篇
地质学   18篇
海洋学   13篇
天文学   16篇
自然地理   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   1篇
  2014年   5篇
  2013年   17篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   10篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
  1984年   3篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
51.
Sediment samples were collected from 30 different locations in Abu Qir Bay (Mediterranean Sea), East Alexandria, Egypt and analyzed for trace elements. The highest concentrations of most of the elements were observed in the nearshore stations in the vicinity of the major anthropogenic activities as industrial settlements, wastewater discharges, and agricultural drainage. In addition, mussel samples of Mactra corallina and Tapes decussata were collected corresponding to the sediment samples. Concentrations of As, Cd, Cr, Mn, and Zn in the mussel tissues were higher than concentrations in sediments, thus indicating their relatively high bioavailability. Sequential extraction procedure was performed on selected sediment samples. Significant correlations were observed between the concentrations of Cu, Mn, Pb, and Zn in the exchangeable fraction of the sediments and the corresponding tissues of M. corallina. The output of the risk assessment applied on the sediments revealed that adverse ecological effects to benthic species could occur and that a higher level of risk is expected from the exposure to Cd, Cr, Hg, and Zn. No adverse carcinogenic or non‐carcinogenic human health effects are expected from the consumption of the two mussel species from Abu Qir Bay.  相似文献   
52.
53.
On dynamic and thermodynamic components of cloud changes   总被引:1,自引:1,他引:1  
Clouds are sensitive to changes in both the large-scale circulation and the thermodynamic structure of the atmosphere. In the tropics, temperature changes that occur on seasonal to decadal time scales are often associated with circulation changes. Therefore, it is difficult to determine the part of cloud variations that results from a change in the dynamics from the part that may result from the temperature change itself. This study proposes a simple framework to unravel the dynamic and non-dynamic (referred to as thermodynamic) components of the cloud response to climate variations. It is used to analyze the contrasted response, to a prescribed ocean warming, of the tropically-averaged cloud radiative forcing (CRF) simulated by the ECMWF, LMD and UKMO climate models. In each model, the dynamic component largely dominates the CRF response at the regional scale, but this is the thermodynamic component that explains most of the average CRF response to the imposed perturbation. It is shown that this component strongly depends on the behaviour of the low-level clouds that occur in regions of moderate subsidence (e.g. in the trade wind regions). These clouds exhibit a moderate sensitivity to temperature changes, but this is mostly their huge statistical weight that explains their large influence on the tropical radiation budget. Several propositions are made for assessing the sensitivity of clouds to changes in temperature and in large-scale motions using satellite observations and meteorological analyses on the one hand, and mesoscale models on the other hand.  相似文献   
54.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   
55.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   
56.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   
57.
58.
59.
Different models of the action of the galactic tide are compared. Each model is a substitute for direct numerical integrations allowing a drastic decrease of the computation time. The models are built using two different techniques, (i) averaging of the fast variable (the mean anomaly) over one cometary period and (ii) fixing the comet in its aphelion direction. Moreover, we consider two different formalisms (Lagrangian and Hamiltonian) and also two different sets of variables. As expected, we find that the model results are independent of the formalism and the set of variables considered, and are highly accurate, whereas mathematical technique leads to poor results. In order to further reduce the computation time, mappings are built from the development of the solution of the models. We show that for these mappings, the set of variables giving the most accurate results is strongly dependent on the cometary eccentricity, e, and semimajor axis, a.  相似文献   
60.
Brown dwarfs are the coolest class of stellar objects known to date. Our present perception is that brown dwarfs follow the principles of star formation, and that brown dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes brown dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of \(\lesssim \)2,800 K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying X-ray activity indicators across the fully convective boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号