首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1885篇
  免费   107篇
  国内免费   7篇
测绘学   77篇
大气科学   142篇
地球物理   427篇
地质学   759篇
海洋学   137篇
天文学   296篇
综合类   8篇
自然地理   153篇
  2023年   12篇
  2022年   10篇
  2021年   31篇
  2020年   47篇
  2019年   44篇
  2018年   56篇
  2017年   78篇
  2016年   93篇
  2015年   63篇
  2014年   62篇
  2013年   119篇
  2012年   81篇
  2011年   101篇
  2010年   111篇
  2009年   109篇
  2008年   106篇
  2007年   91篇
  2006年   95篇
  2005年   89篇
  2004年   88篇
  2003年   61篇
  2002年   64篇
  2001年   37篇
  2000年   26篇
  1999年   38篇
  1998年   20篇
  1997年   16篇
  1996年   19篇
  1995年   7篇
  1994年   23篇
  1993年   17篇
  1992年   7篇
  1991年   8篇
  1990年   10篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   14篇
  1982年   9篇
  1981年   10篇
  1980年   16篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   9篇
  1970年   5篇
  1969年   5篇
排序方式: 共有1999条查询结果,搜索用时 437 毫秒
951.
Abstract— Queen Alexandra Range (QUE) 93069 is a glass-rich regolith breccia derived from the lunar highlands. The high abundance of glassy fragments, the presence of agglutinates, the small size of all mineral and glass fragments, the presence of mostly melt rocks, and the low abundance of pristine lunar crustal rocks, all indicate that QUE 93069 is derived from a mature regolith. This conclusion is also supported by its high siderophile element content. The most common mafic mineral is pyroxene, with compositions that indicate derivation from ferroan ANT suite rocks. Rare gabbro differentiation products may be indicated by the presence of silica, fayalitic olivine, and one pyroxferroite grain. Lithic fragments are mostly meta-melt rocks of ANT composition. The glass compositions are dominated by troctolitic anorthosite compositions, followed by gabbroic anorthosite and noritic anorthosite. Most glasses are ol-normative in composition. Some rare basic glasses of noritic composition were observed. Glass fragments and matrix glasses are alkali-poor, except for some rare alkali-rich shards. The bulk chemical composition of QUE 93069, as well as the rare-earth-element (REE) abundance pattern, is very similar to that of other highlands meteorites, such as MAC 88105 and Y-86032 and to average lunar highlands crust. One small porous clast was found to be very rich in volatile elements, as well as in most lithophile and siderophile elements. As this sample also contains abundant sulfides, the enrichments could be related to element mobilization and redistribution by volatile sulfur species.  相似文献   
952.
Internal parts of the Alps have undergone widespread extensional deformation in the course of their Neogene exhumation history. Palaeostress inversion methods are used to map the prevailing stress fields and their evolution through time. Here we present new data from 100 sites with a total of about 2000 faults/striae couples, covering a large portion of the inner north‐western Alps. Palaeostress tensors are mostly extensional, although one‐third of them are transcurrent. The dominant direction of minimum horizontal stress axes (σ3) is in an orogen‐parallel (N30° to N70°) orientation around the bend of the north‐west alpine arc. A comparison between this older (Neogene, post‐metamorphic) stress field with the current stress and strain field determined from seismotectonics and geodesy indicates a change in deformation mode from early orogen‐parallel extrusion to a late and ongoing orogen‐perpendicular spreading.  相似文献   
953.
Abstract— The newly discovered asteroid 2003 YN107 is currently a quasi‐satellite of the Earth, making a satellite‐like orbit of high inclination with apparent period of one year. The term quasi‐satellite is used since these large orbits are not completely closed, but rather perturbed portions of the asteroid's orbit around the Sun. Due to its extremely Earth‐like orbit, this asteroid is influenced by Earth's gravity to remain within 0.1 AU of the Earth for approximately 10 years (1997 to 2006). Prior to this, it had been on a horseshoe orbit closely following Earth's orbit for several hundred years. It will re‐enter such an orbit, and make one final libration of 123 years, after which it will have a close interaction with the Earth and transition to a circulating orbit. Chaotic effects limit our ability to determine the origin or fate of this object.  相似文献   
954.
Abstract— Approximately 100 m of impactites were retrieved from the ICDP borehole Yaxcopoil‐1 (Yax‐1), located ~60 km south‐southwest from the center of the Chicxulub impact crater on the Yucatán Peninsula of Mexico. Here, we characterize and discuss this impact breccia interval according to its geochemical characteristics. Chemical analysis of samples from all five recognized breccia units reveals that the impactites are of heterogeneous composition with regard to both major and trace elements at the single sample (8–16 cm3) scale. This is primarily due to a strong mixing relationship between carbonate and silicate fractions. However, averaged compositions for suevitic units 1 to 3 are similar, and the silicate fraction (after removal of the carbonate component) indicates thorough mixing and homogenization. Analysis of the green melt breccia horizon, unit 4, indicates that it contains a distinct mafic component. Large brown melt particles (in units 2, 3, and 4) represent a mixture of feldspathic and mafic components, with high CaO abundances. Unit 5 shows the greatest compositional diversity, with highly variable abundances of SiO2, CaO, and MgO. Inter‐sample heterogeneity is the result of small sample size combined with inherent heterogeneous lithological compositions, highly variable particle size of melt and lithic components, and post‐depositional alteration. In contrast to samples from the Y6 borehole from closer to the center of the structure, Yax‐1 impactites have a strong carbonate component. Elevated loss on ignition, Rb, and Cs contents in the upper two impactite units indicate strong interaction with seawater. The contents of the siderophile elements, including Ni, Co, Ir, and Cr, do not indicate the presence of a significant extraterrestrial component in the Yax‐1 impactites.  相似文献   
955.
956.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   
957.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   
958.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   
959.
Isotopes are increasingly used in rainfall-runoff models to constrain conceptualisations of internal catchment functioning and reduce model uncertainty. However, there is little guidance on how much tracer data is required to adequately do this, and different studies use data from different sampling strategies. Here, we used a 7-year time series of daily stable water isotope samples of precipitation and streamflow to derive a range of typical stream sampling regimes and investigate how this impacts calibration of a semi-distributed tracer-aided model in terms of flow, deuterium and flux age simulations. Over the 7 years weekly sampling facilitated an almost identical model performance as daily, and there were only slight deteriorations in performance for fortnightly sampling. Monthly sampling resulted in poorer deuterium simulations and greater uncertainty in the derived parameter sets ability to accurately represent catchment functioning, evidenced by unrealistic reductions in the volumes of water available for mixing in the saturation area causing simulated water age decreases. Reducing sampling effort and restricting data collection to 3 years caused reductions in the accuracy of deuterium simulation, though the deterioration did not occur if sampling continued for 5 years. Analysis was also undertaken to consider the effects of reduced sampling effort over the driest and wettest hydrological years to evaluate effects of more extreme conditions. This showed that the model was particularly sensitive to changes in sampling during dry conditions, when the catchment hydrological response is most non-linear. Across all dataset durations, sampling in relation to flow conditions, rather than time, revealed that samples collected at flows >Q50 could provide calibration results comparable to daily sampling. Targeting only extreme high flows resulted in poor deuterium and low flow simulations. This study suggests sufficient characterization of catchment functioning can be obtained through reduced sampling effort over longer timescales and the targeting of flows >Q50.  相似文献   
960.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号