首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2672篇
  免费   129篇
  国内免费   17篇
测绘学   95篇
大气科学   194篇
地球物理   657篇
地质学   1019篇
海洋学   176篇
天文学   435篇
综合类   10篇
自然地理   232篇
  2023年   12篇
  2022年   12篇
  2021年   42篇
  2020年   60篇
  2019年   51篇
  2018年   65篇
  2017年   92篇
  2016年   107篇
  2015年   72篇
  2014年   77篇
  2013年   161篇
  2012年   111篇
  2011年   137篇
  2010年   129篇
  2009年   123篇
  2008年   128篇
  2007年   117篇
  2006年   128篇
  2005年   119篇
  2004年   118篇
  2003年   87篇
  2002年   90篇
  2001年   48篇
  2000年   36篇
  1999年   58篇
  1998年   35篇
  1997年   36篇
  1996年   25篇
  1995年   28篇
  1994年   29篇
  1993年   26篇
  1992年   15篇
  1991年   16篇
  1990年   18篇
  1989年   16篇
  1987年   20篇
  1986年   14篇
  1985年   17篇
  1984年   20篇
  1983年   21篇
  1982年   20篇
  1981年   14篇
  1980年   22篇
  1979年   17篇
  1978年   16篇
  1977年   16篇
  1976年   12篇
  1975年   17篇
  1973年   11篇
  1970年   11篇
排序方式: 共有2818条查询结果,搜索用时 359 毫秒
11.
The evolution of a stellar, initially dipole type magnetosphere interacting with an accretion disk is investigated using numerical ideal MHD simulations. The simulations follow several 1000 Keplerian periods of the inner disk (for animated movies see http://www.aip.de~cfendt).Our model prescribes a Keplerian disk around a rotating star as a fixed boundary condition. The initial magnetic field distribution remains frozen into the star and the disk. The mass flow rate into the corona is fixed for both components. The initial dipole type magnetic field develops into a spherically radial outflow pattern with two main components – a disk wind and a stellar wind – both evolving into a quasi-stationary final state. A neutral field line divides both components, along which small plasmoids are ejected in irregular time intervals. The half opening angle of the stellar wind cone varies from 30° to55° depending on the ratio of the mass flow rates of disk wind and stellar wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk radius. An axial jet forms during the first decades of rotations. However, this feature does not survive on the very long time scale and a pressure driven low velocity flow along the axis evolves. Within a cone of 15° along the axis the formation of knots may be observed if the stellar wind is weak. With the chosen mass flow rates and field strength we see almost no indication for a flow self-collimation. This is due to the weak net poloidal electric current in the magnetosphere which is in difference to typical jet models.  相似文献   
12.
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes.  相似文献   
13.
Summary. An assessment is made of the bias of fitting constrained layered-earth models to transient electromagnetic data obtained over 3-D structures. In this assessment we use the central-loop configuration and show that accurate estimates of the depth of burial of 3-D structures can be obtained with layered-earth model fitting. However, layered-earth interpretations are not reliable for estimating depth extents and resistivities of 3-D structures. When layered earths are used for interpretation, it is advantageous in some cases to use data based on the magnetic field instead of the voltage. A magnetic-field definition of apparent resistivity, in contrast to a definition based on the voltage, eliminates apparent-resistivity overshoots and undershoots in the data. A resistivity undershoot in the data can produce an extraneous and misleading layer in an interpretation of a 3-D resistive structure. Due to 3-D effects, apparent-resistivity soundings (magnetic field and voltage) may rise so steeply at late times that it may not be possible to fit a sounding to a reasonable layered-earth model. Truncating such a sounding, over a buried conductor, allows for a reasonable layered-earth fit and an accurate estimate of the depth to the conductor. However, the resistivity of the conductor is overestimated.
Measurements of the horizontal field in the central-loop configuration can map 3-D structures, provided the sensor is located accurately at the centre of the transmitting loop. Horizontal-field calculations show that the transients peak on the flanks of a 3-D structure, but are depressed over the structure's centre. Weak transient responses flanked by two large transient responses, which are opposite in sign, locate the structure. The sign reversal is caused by a corresponding reversal in the currents that are channelled through or deflected away from conductive or resistive structures, respectively.  相似文献   
14.
Summary. Vertical-incidence reflection profiling has identified several characteristic features of the continental Iithosphere including a generally transparent upper crust, a reflective lower crust, reflections from the crust-mantle boundary, and a commonly transparent upper mantle. The underlying physical causes of these characteristic features remain poorly understood. This review summarizes additional information brought to bear on the physical properties of these characteristic crustal structures through the use of coincident wide-angle refraction profiling.  相似文献   
15.
Times for accumulation of chemically significant dosages on icy surfaces of Centaur, Kuiper Belt, and Oort Cloud objects from plasma and energetic ions depend on irradiation position within or outside the heliosphere. Principal irradiation components include solar wind plasma ions, pickup ions from solar UV ionization of interstellar neutral gas, energetic ions accelerated by solar and interplanetary shocks, including the putative solar wind termination shock, and galactic cosmic ray ions from the Local Interstellar Medium (LISM). We present model flux spectra derived from spacecraft data and models for eV to GeV protons at 40 AU, a termination shock position at 85 AU, and in the LISM. Times in years to accumulate dosages ~100 eV per molecule are computed from the spectra as functions of sensible surface depth less than one centimeter at unit density.The collisional resurfacing model of Luu and Jewitt is reconsidered in thecontext of depth-dependent dosage rates from plasma, suprathermal,and higher energy protons, and global exposure, by micrometeoroiddust grain impacts, of moderately irradiated red material below athin crust of heavily irradiated neutral material. This material should be more visible on dynamically `cold’ objects in the ~40 AU region.  相似文献   
16.
17.
Summary The signals transmitted by Block II satellites of the Global Positioning System (GPS) can be degraded to limit the highest accuracy of the system (10 m or better point positioning) to authorized users. This mode of degraded operation is called Selective Availability (S/A). S/A involves the degradation in the quality of broadcast orbits and satellite clock dithering. We monitored the dithered satellite oscillator and investigated the effect of this clock dithering on high accuracy relative positioning. The effect was studied over short 3-meter and zero-baselines with two GPS receivers. The equivalent S/A effects for baselines ranging from 0 to >10,000 km can be examined with short test baselines if the receiver clocks are deliberately mis-synchronized by a known and varying amount. Our results show that the maximum effect of satellite clock dithering on GPS double difference phase residuals grows as a function of the clock synchronization error according to: S/A effect =0.04 cm/msec, and it increases as a function of baseline length like: S/A effect =0.014 cm/100 km. These are equations for maximum observed values of post-fit residuals due to S/A. The effect on GPS baselines is likely to be smaller than the 0.14 mm for a baseline separation of 100 km. We therefore conclude, for our limited data set, and for the level of S/A during our tests, that S/A clock dithering has negligible effect on all terrestrial GPS baselines if double difference processing techniques are employed and if the GPS receivers remain synchronized to better than 10 msec. S/A may constitute a problem, however, if accurate point processing is required, or if GPS receivers are not synchronized. We suggest and test two different methods to monitor satellite frequency offsets due to S/A. S/A modulates GPS carrier frequencies in the range of-2 Hz to +2 Hz over time periods of several minutes. The methods used in this paper to measure the satellite clock dither could be applied by the civilian GPS community to continuously monitor S/A clock dithering. The monitored frequencies may aid high accuracy point positioning applications in a postprocessing mode (Malys and Ortiz 1989), and differential GPS with poorly synchronized receivers (Feigl et al. 1991).  相似文献   
18.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   
19.
We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit.A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit.Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates.Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (−24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (−22.4‰ to −20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.  相似文献   
20.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号