首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1790篇
  免费   104篇
  国内免费   6篇
测绘学   76篇
大气科学   140篇
地球物理   387篇
地质学   717篇
海洋学   134篇
天文学   288篇
综合类   8篇
自然地理   150篇
  2024年   4篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   109篇
  2009年   100篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   59篇
  2002年   62篇
  2001年   36篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   16篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1900条查询结果,搜索用时 31 毫秒
931.
Abstract– Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s?1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro‐computer tomography (μ‐CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p‐wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.  相似文献   
932.
One of the main objectives of ESA’s Gravity Field and Steady-State Ocean Circulation mission GOCE (Gravity field and steady-state ocean circulation mission, 1999) is to allow global unification of height systems by directly providing potential differences between benchmarks in different height datum zones. In other words, GOCE provides a globally consistent and unbiased geoid. If this information is combined with ellipsoidal (derived from geodetic space techniques) and physical heights (derived from leveling/gravimetry) at the same benchmarks, datum offsets between the datum zones can be determined and all zones unified. The expected accuracy of GOCE is around 2–3 cm up to spherical harmonic degree n max ≈ 200. The omission error above this degree amounts to about 30 cm which cannot be neglected. Therefore, terrestrial residual gravity anomalies are necessary to evaluate the medium and short wavelengths of the geoid, i.e. one has to solve the Geodetic Boundary Value Problem (GBVP). The theory of height unification by the GBVP approach is well developed, see e.g. Colombo (A World Vertical Network. Report 296, Department of Geodetic Science and Surveying, 1980) or Rummel and Teunissen (Bull Geod 62:477–498, 1988). Thereby, it must be considered that terrestrial gravity anomalies referring to different datum zones are biased due to the respective datum offsets. Consequently, the height reference surface of a specific datum zone deviates from the unbiased geoid not only due to its own datum offset (direct bias term) but is also indirectly affected by the integration of biased gravity anomalies. The latter effect is called the indirect bias term and it considerably complicates the adjustment model for global height unification. If no satellite based gravity model is employed, this error amounts to about the same size as the datum offsets, i.e. 1–2 m globally. We show that this value decreases if a satellite-only gravity model is used. Specifically for GOCE with n max ≈ 200, the error can be expected not to exceed the level of 1 cm, allowing the effect to be neglected in practical height unification. The results are supported by recent findings by Gatti et al. (J Geod, 2012).  相似文献   
933.
The Google Earth terrain model could prove beneficial for extraction of positional data in the future. At present, only an aging independent benchmark study (Potere, D., 2008. Horizontal position accuracy of Google Earth's high-resolution imagery archive. Sensors, 8, 7973–7981) provides constraints on positional accuracy for Google Earth imagery. In this investigation, we compared virtually traced positions against high-precision (<1 m) field measurements along three stratigraphic unconformity sub-sections in the Big Bend region to determine current positional accuracy for the Google Earth terrain model. A horizontal position accuracy of 2.64 m RMSEr was determined for the Google Earth terrain model with mean offset distance being 6.95 m. A vertical position accuracy of 1.63 m RMSEz with mean offset distance of 2.66 m was also calculated for the terrain model. Results suggest data extracted from the Google Earth terrain model could plausibly be used in future studies. However, we urge caution in using Google Earth data due to limited information disclosures by developers.  相似文献   
934.
Development of an instantaneous GNSS/MEMS attitude determination system   总被引:3,自引:3,他引:0  
Global navigation satellite systems (GNSS) are well suited for attitude determination. The key to high-precision GNSS-attitude determination is the ambiguity resolution. In case of kinematic applications, the rapidity of this process is of particular importance. We present a new instantaneous attitude determination system for GNSS-challenged environments. The single-epoch ambiguity resolution is performed by the ambiguity function method aided by a micro-electro-mechanical system (MEMS), leading to success rates above 99 %. The GNSS/MEMS fusion is realized by the use of an extended Kalman filter. When the system is stationary, a state vector augmentation with a shaping filter reduces systematic effects in the GNSS-attitudes. By means of two field experiments, the system was tested successfully. Despite poor GNSS measurement conditions, it provided reliable and accurate results, with empirical standard deviations in the range of 0.03–0.1 deg for the yaw angle.  相似文献   
935.
(Near-)real-time orbit determination for GNSS radio occultation processing   总被引:2,自引:1,他引:1  
The processing of GPS radio occultation measurements for use in numerical weather predictions requires a precise orbit determination (POD) of the host satellite in near-real-time. Making use of data from the GRAS instrument on Metop-A, the performance of different GPS ephemeris products and processing concepts for near-real-time and real-time POD is compared. While previous analyses have focused on the achievable along-track velocity accuracy, this study contributes a systematic comparison of the resulting estimated bending angles. This enables a more rigorous trade-off of different orbit determination methodologies in relation to the end-user needs for atmospheric science products. It is demonstrated that near-real-time GPS orbit and clock products have reached a sufficient quality to determine the Metop-A along-track velocity with an accuracy of better than 0.05 mm/s that was formerly only accessible in post-processing. The resulting bending angles are shown to exhibit standard deviation and bias differences of less than 0.3 % compared with post-processed products up to altitudes of at least 40 km, which is notably better than 1 % accuracy typically assumed for numerical weather predictions in this height regime. Complementary to the analysis of ground-based processing schemes, the potential of autonomous on-board orbit determination is investigated for the first time. Using actual GRAS flight data, it is shown that a 0.5 m 3D rms position accuracy and a 0.2 mm/s along-track velocity accuracy can in fact be obtained in real-time with the currently available GPS broadcast ephemeris quality. Bending angles derived from the simulated real-time processing exhibit a minor performance degradation above tangent point heights of 40 km but negligible differences with respect to ground-based products below this altitude. Onboard orbit determination and, if desired, bending angle computation, can thus enable a further simplification of the ground segment in future radio occultation missions and contribute to reduced product latencies for radio occultation data assimilation in numerical weather predictions.  相似文献   
936.
Danish Journal of Geography: 71–82, 1995.

This paper presents two mega events as tools in the strategic planning of the Copenhagen area. Due to growing inter-metropolitan competition, increasingly offensive and complex means are applied. This demands strong leadership, stable longterm planning and willingness to accept the costs in order to reach the objectives. Marketing versus strategic planning is discussed. The general position of Copenhagen in the European urban system gives perspective to a potential change on the South Scandinavian urban scene. New instruments of strategic planning in Greater Copenhagen are introduced. The competitive level of Copenhagen is analyzed in relation to Stockholm, Berlin and Hamburg. Two examples of mega events are discussed that represent typical elements in urban competition: cultural events and infrastructure improvements. 1) Copenhagen as ‘The cultural City of Europe’ in 1996 represents a temporary mega event. 2) The planned bridge between Copenhagen and the south Swedish city of Malmö, combined with Swedish entrance into EU, opens up for development of the first cross-national integrated large-city region outside the European centre. This is an example of a mega event which will alter the scene permanently. Both events are important issues used in developing a growth strategy for Greater Copenhagen. But neither the cultural city nor the bridge may by themselves guarantee any advantages. It depends upon the ability of local actors to develop and promote the quality of their city. The paper represents a continuation and elaboration on earlier papers, see Matthiessen (1990, 1992) and Andersen &; Jørgensen (1994).  相似文献   
937.
Matthiessen. Christian Wichmann: Byerhvervene. Lokaliseringstendenser 1970–83. Geografisk Tidsskrift 87:22–26. København, juni 1987.

The Danish pattern of urban employment changed little 1970–83 although dynamic structural changes occurred, and although the total increased 23% to 2,353,366 urban jobs. The manufacturing deconcentration was more than counteracted by growth in no. of tertiary jobs in the large urban places.  相似文献   
938.
939.
We report on testing the UNB (University of New Brunswick) software suite for accurate regional geoid model determination by use of Stokes-Helmert’s method against an Australian Synthetic Field (ASF) as “ground truth”. This testing has taken several years and has led to discoveries of several significant errors (larger than 5mm in the resulting geoid models) both in the UNB software as well as the ASF. It was our hope that, after correcting the errors in UNB software, we would be able to come up with some definite numbers as far as the achievable accuracy for a geoid model computed by the UNB software. Unfortunately, it turned out that the ASF contained errors, some of as yet unknown origin, that will have to be removed before that ultimate goal can be reached. Regardless, the testing has taught us some valuable lessons, which we describe in this paper. As matters stand now, it seems that given errorless gravity data on 1′ by 1′ grid, a digital elevation model of a reasonable accuracy and no topographical density variations, the Stokes-Helmert approach as realised in the UNB software suite is capable of delivering an accuracy of the geoid model of no constant bias, standard deviation of about 25 mm and a maximum range of about 200 mm. We note that the UNB software suite does not use any corrective measures, such as biases and tilts or surface fitting, so the resulting errors reflect only the errors in modelling the geoid.  相似文献   
940.
Abstract

In a recent development in the literature, a new temporal rainfall model, based on the Bartlett-Lewis clustering mechanism and intended for sub-hourly application, was introduced. That model replaced the rectangular rain cells of the original model with finite Poisson processes of instantaneous pulses, allowing greater variability in rainfall intensity over short intervals. In the present paper, the basic instantaneous pulse model is first extended to allow for randomly varying storm types. A systematic comparison of a number of key model variants, fitted to 5-min rainfall data from Germany, then generates further new insights into the models, leading to the development of an additional model extension, which introduces dependence between rainfall intensity and duration in a simple way. The new model retains the original rectangular cells, previously assumed inappropriate for fine-scale data, obviating the need for the computationally more intensive instantaneous pulse model.
Editor D. Koutsoyiannis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号