首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   104篇
  国内免费   6篇
测绘学   76篇
大气科学   137篇
地球物理   393篇
地质学   720篇
海洋学   136篇
天文学   308篇
综合类   8篇
自然地理   154篇
  2023年   12篇
  2022年   10篇
  2021年   31篇
  2020年   46篇
  2019年   44篇
  2018年   56篇
  2017年   78篇
  2016年   90篇
  2015年   60篇
  2014年   59篇
  2013年   121篇
  2012年   79篇
  2011年   96篇
  2010年   109篇
  2009年   100篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   63篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   16篇
  1996年   17篇
  1995年   6篇
  1994年   22篇
  1993年   15篇
  1992年   10篇
  1991年   8篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   15篇
  1979年   8篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1932条查询结果,搜索用时 468 毫秒
241.
User generated content such as the georeferenced images and their associated tags found in Flickr provides us with opportunities to explore how the world is described in the non‐scientific, everyday language used by contributors. Geomorphometry, the quantitative study of landforms, provides methods to classify Digital Elevation Models (DEMs) according to attributes such as slope and convexity. In this article we compare the terms used in Flickr and Geograph in Great Britian to describe georeferenced images to a quantitative, unsupervised classification of a DEM, using a well established method, and explore the variation of terms across geomorphometric classes and space. Anthropogenic terms are primarily associated with more gentle slopes, while terms which refer to objects such as mountains and waterfalls are typical of steeper slopes. Terms vary both across and within classes, and the source of the user generated content has an influence on the type of term used with Geograph, a collection which aims to document the geography of Great Britain, dominated by features which might be observed on a map.  相似文献   
242.
Evapotranspiration is a source of water vapour to the atmosphere, and as a crucial indicator of landscape behaviour its accurate measurement has widespread implications. Here we investigate errors that are prevalent and systematic in the closed-path eddy-covariance measurement of latent heat flux: the attenuation of fluxes through dampened cospectral power at high frequencies. This process is especially pronounced during periods of high relative humidity through the adsorption and desorption of water vapour along the tube walls. These effects are additionally amplified during lower air temperature conditions. Here, we quantify the underestimation of evapotranspiration by a closed-path system by comparing its flux estimate to simultaneous and adjacent measurements from an open-path sensor. We apply models relating flux loss to relative humidity itself, to the lag time of the cross-correlation peak between the water vapour and vertical wind velocity signals, and to models of cospectral attenuation relative to the cospectral power of simultaneous sensible heat-flux measurements. We find that including the role of temperature in modifying the attenuation–humidity relationship is essential for unbiased flux correction, and that physically based cospectral attenuation methods are effective characterizers of closed-path instrument signal loss relative to the unattenuated flux value.  相似文献   
243.
The non-CO2 climate impact of aviation (NOx and contrails) is assessed and emissions weighting factors (EWFs) i.e., the factor by which aviation CO2 emissions should be multiplied to get the CO2-equivalent emissions for annual fleet average conditions are estimated. The EWFs are estimated using two economic metrics. One is based on the relative damage cost between non-CO2 forcers and CO2. The other is based on the cost-effective valuation between the non-CO2 forcers and CO2 given an upper ceiling on the global annual average surface temperature (set at 2?K above pre-industrial levels). We also estimate EWFs using three physical metrics, Global Warming Potential (GWP), Global Temperature change Potential (GTP) and Sustained GTP (SGTP) and compare our results with the economics based metrics. Given best estimates on the forcing contributions from CO2, contrails and NOx from aviation and by using a discount rate of 3%/year, the RDC based metric gives an EWF equal to 1.4 (slightly higher than EWFs based on GWP and SGTP using a 100?year time horizon). EWF using the cost-effective approach depends on the time that remains before stabilization occurs. It is roughly equal to unity until a few years before the temperature reaches its ceiling, and approximately 2 when stabilization has taken place. EWFs based on GTP resemble those based on CETO when the time left to when stabilization occurs is sufficiently large. Once stabilization has occurred CETO values resemble RDC based values. If aviation-induced cirrus clouds are included, uncertainties increase and the EWFs for GWP, SGTP and RDC based metrics end up in the range 1.3–2.9, while EWFs for GTP and CETO remain close to unity in the near term.  相似文献   
244.
This study compares the surface wind speed and forest damage data of two exceptionally severe winter storms, Vivian 1990 and Lothar 1999. The study area comprises the region that suffered damage in Switzerland. The wind speed data were derived from simulations of MeteoSwiss (Federal Office of Meteorology and Climatology), measurements during the storm periods and expert analyses of the data. The remotely sensed forest damage data were provided by the Federal Office for the Environment and the forest cover data by Swiss Federal Statistical Office. We compared data on the peak gust and maximum average wind speed, with data on the spatially related forest area and forest damage area, and found some clear differences in the correlations between the different wind data and forest damage. Our results point generally to the damage-causing role of near-surface gusts at maximum wind speeds during the storm. These tended to be spatially distributed on a fine scale. In only a few cases were the results statistically significant. However, these results could probably be improved with better wind data. For example, gust measurements spatially closer to forests or simulations of gusts at maximum wind speed could be produced with a spatially higher resolution.  相似文献   
245.
Spherical harmonic synthesis (SHS) of gravity field functionals at the Earth’s surface requires the use of heights. The present study investigates the gradient approach as an efficient yet accurate strategy to incorporate height information in SHS at densely spaced multiple points. Taylor series expansions of commonly used functionals quasigeoid heights, gravity disturbances and vertical deflections are formulated, and expressions of their radial derivatives are presented to arbitrary order. Numerical tests show that first-order gradients, as introduced by Rapp (J Geod 71(5):282–289, 1997) for degree 360 models, produce cm- to dm-level RMS approximation errors over rugged terrain when applied with EGM2008 to degree 2190. Instead, higher-order Taylor expansions are recommended that are capable of reducing approximation errors to insignificance for practical applications. Because the height information is separated from the actual synthesis, the gradient approach can be applied along with existing highly efficient SHS routines to compute surface functionals at arbitrarily dense grid points. This confers considerable computational savings (above or well above one order of magnitude) over conventional point-by-point SHS. As an application example, an ultra-high resolution model of surface gravity functionals (EurAlpGM2011) is constructed over the entire European Alps that incorporates height information in the SHS at 12,000,000 surface points. Based on EGM2008 and residual topography data, quasigeoid heights, gravity disturbances and vertical deflections are estimated at ~200m resolution. As a conclusion, the gradient approach is efficient and accurate for high-degree SHS at multiple points at the Earth’s surface.  相似文献   
246.
247.
Three violent eighteenth-century storms that ravaged the North Sea area (1703), western central Europe (1739) and Portugal (1739) are investigated from the point of view of their meteorological setting, their socio-economic impact, and whether and by what means they secured an enduring place in the cultural memory. The evidence draws on individual narrative sources such as chronicles and poems, and institutional sources such as ship’s logbooks and state-organised ‘windthrow’ inventories of tree loss. Each of the three storms had socio-economic impacts that could be described as ‘war-like’ in the damage caused to buildings and the destruction of forests. The “Great Storm” of December 1703 jeopardized English naval supremacy in the War of the Spanish Succession by sinking a number of Royal Navy ships and taking the life of more than 8000 seamen. In January 1739 two similarly destructive storms swept over mainland Europe. The cultural memory of the three events here considered was however strikingly different. The sequence of storms in January 1739 though being the most protracted of the last centuries, and well-chroniceled, did not persist in the collective memories of those in France, Switzerland and elsewhere who experienced them. Likewise, the “Great Storm” was quickly forgotten on the continent, whereas its memory remained deeply rooted in England through the writings of Defoe (1704). In Portugal the 1739 storm won a lasting place in the country’s cultural memory owing to two poems that it inspired. Furthermore, it was recorded in the Kingdom’s official newspaper, in the astronomical prognoses and in written records of the Old Regime’s cultural elite.  相似文献   
248.
The Lakagígar eruption in Iceland during 1783 was followed by the severe winter of 1783/1784, which was characterised by low temperatures, frozen soils, ice-bound watercourses and high rates of snow accumulation across much of Europe. Sudden warming coupled with rainfall led to rapid snowmelt, resulting in a series of flooding phases across much of Europe. The first phase of flooding occurred in late December 1783–early January 1784 in England, France, the Low Countries and historical Hungary. The second phase at the turn of February–March 1784 was of greater extent, generated by the melting of an unusually large accumulation of snow and river ice, affecting catchments across France and Central Europe (where it is still considered as one of the most disastrous known floods), throughout the Danube catchment and in southeast Central Europe. The third and final phase of flooding occurred mainly in historical Hungary during late March and early April 1784. The different impacts and consequences of the above floods on both local and regional scales were reflected in the economic and societal responses, material damage and human losses. The winter of 1783/1784 can be considered as typical, if severe, for the Little Ice Age period across much of Europe.  相似文献   
249.
The Mesoscale Modeling System Version 5 (MM5) was one-way nested to the Goddard Institute for Space Studies global climate model (GISS GCM), which provided the boundary conditions for present (1990s) and future (IPCC SRES A2 scenario, 2050s) five-summer “time-slice” simulations over the continental and eastern United States. Five configurations for planetary boundary layer, cumulus parameterization, and radiation scheme were tested, and one set was selected for use in the New York City Climate and Health Project—a multi-disciplinary study investigating the effects of climate change and land-use change on human health in the New York metropolitan region. Although hourly and daily data were used in the health project, in this paper we focus on long-term current and projected mean climate change. The GISS-MM5 was very sensitive to the choice of cumulus parameterization and planetary boundary layer scheme, leading to significantly different temperature and precipitation outcomes for the 1990s. These differences can be linked to precipitation type (convective vs. non-convective), to their effect on solar radiation received at the ground, and ultimately to surface temperature. The projected changes in climate (2050s minus 1990s) were not as sensitive to choice of model physics combination. The range of the projected surface temperature changes at a given grid point among the model versions was much less than the mean change for all five model configurations, indicating relative consensus for simulating surface temperature changes among the different model projections. The MM5 versions, however, offer less consensus regarding 1990s to 2050s changes in precipitation amounts. All of the projected 2050s temperature changes were found to be significant at the 95th percent confidence interval, while the majority of the precipitation changes were not.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号