首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   81篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   391篇
地质学   718篇
海洋学   134篇
天文学   290篇
综合类   8篇
自然地理   150篇
  2024年   5篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   91篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   80篇
  2011年   98篇
  2010年   108篇
  2009年   99篇
  2008年   103篇
  2007年   91篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   8篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1903条查询结果,搜索用时 15 毫秒
991.
We have studied 56 unfractured chalk samples of the Upper Cretaceous Tor Formation of the Dan, South Arne and Gorm Fields, Danish North Sea. The samples have porosities of between 14% and 45% and calcite content of over 95%. The ultrasonic compressional‐ and shear‐wave velocities (VP and VS) for dry and water‐saturated samples were measured at up to 75 bar confining hydrostatic pressure corresponding to effective stress in the reservoir. The porosity is the main control of the ultrasonic velocities and therefore of the elastic moduli. The elastic moduli are slightly higher for samples from the South Arne Field than from the Dan Field for identical porosities. This difference may be due to textural differences between the chalk at the two locations because we observe that large grains (i.e. filled microfossils and fossil fragments) that occur more frequently in samples from the Dan Field have a porosity‐reducing effect and that samples rich in large grains have a relatively low porosity for a given P‐wave modulus. The clay content in the samples is low and is mainly represented by either kaolinite or smectite; samples with smectite have a lower P‐wave modulus than samples with kaolinite at equal porosity. We find that ultrasonic VP and VS of dry chalk samples can be satisfactorily estimated with Gassmann's relationships from data for water‐saturated samples. A pronounced difference between the VP/VS ratios for dry and water‐saturated chalk samples indicates promising results for seismic amplitude‐versus‐offset analyses.  相似文献   
992.
In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from ? 132 to 166 m. On Venus, the geoidal heights are between ? 51 and 137 m with maxima on this planet at Atla Regio and Beta Regio. The largest geoid undulations between ? 747 and 1685 m were found on Mars, with the extreme positive geoidal heights under Olympus Mons in Tharsis region. Large variations in the geoidal geometry are also confirmed on the Moon, with the geoidal heights ranging from ? 298 to 461 m. For comparison, the terrestrial geoid undulations are mostly within ± 100 m. We also demonstrate that a commonly used method for computing the geoidal heights that disregards the differences between the gravity field outside and inside topographic masses yields relatively large errors. According to our estimates, these errors are ? 0.3/+ 3.4 m for Mercury, 0.0/+ 13.3 m for Venus, ? 1.4/+ 125.6 m for Mars, and ? 5.6/+ 45.2 m for the Moon.  相似文献   
993.
In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m?3, South Island of ~2600 kg m?3, and the whole New Zealand of ~2590 kg m?3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m?3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.  相似文献   
994.
South America is experiencing rapid change in forest cover, of both native and planted forest. Forest cover loss is primarily attributable to fire, logging, and conversion of native forest to agriculture, pasture, and forest plantations, and types of change vary within and among the many diverse types of forests in South America. Major changes in forest cover and growing policy concerns underscore an urgent need for research on sustainable forest management and water ecosystem services in South America. Differences in land ownership and management objectives create trade‐offs between wood production and water ecosystem services from forests. Work is needed to quantify how forest change and management affect ecosystem services, such as wood production versus water provision. Current scientific understanding of forest management effects on water ecosystem services in South America has important limitations, including a scarcity of long‐term records and few long‐term integrated watershed studies. Industry, government, universities, and local communities should collaborate on integrated applied studies of forests and water. Data archiving and publically available data are required. The creation of national networks and a multi‐country South America network to identify and implement common water research protocols, share results, and explore their implications would promote common and well‐supported policies. Hydrologists working in South America are well placed to tackle the challenges and opportunities for collaborative research that will maintain the intrinsic values and water ecosystem services provided by South America's forests.  相似文献   
995.
Most rivers worldwide have a strong interaction with groundwater when they leave the mountains and flow over alluvial plains before flowing into the seas or disappearing in the deserts, and in New Zealand, typically, rivers lose water to the groundwater in the upper plains and generally gain water from the groundwater in the lower plains. Aiming at simulating surface water–groundwater interaction nationally in New Zealand, we developed a conceptual groundwater module for the national hydrologic model TopNet to simulate surface water–groundwater interaction, groundwater flow, and intercatchment groundwater flow. The developed model was applied to the Pareora catchment in South Island of New Zealand, where there are concurrent spot gauged flows. Results show that the model simulations not only fit quite well to flow measurement but also to concurrent spot gauged flows, and compared to the original TopNet, it has a significant improvement in the low flows. Sensitivity analysis shows river flow is sensitive to the river losing/gaining rate instead of groundwater characteristic, while groundwater storage is sensitive to both river losing/gaining rate and groundwater characteristic. This indicates our conceptual approach is promising for nationwide modeling without the large amount of geology and aquifer data typically required by physically‐based modeling approaches.  相似文献   
996.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   
997.
We report on testing the UNB (University of New Brunswick) software suite for accurate regional geoid model determination by use of Stokes-Helmert’s method against an Australian Synthetic Field (ASF) as “ground truth”. This testing has taken several years and has led to discoveries of several significant errors (larger than 5mm in the resulting geoid models) both in the UNB software as well as the ASF. It was our hope that, after correcting the errors in UNB software, we would be able to come up with some definite numbers as far as the achievable accuracy for a geoid model computed by the UNB software. Unfortunately, it turned out that the ASF contained errors, some of as yet unknown origin, that will have to be removed before that ultimate goal can be reached. Regardless, the testing has taught us some valuable lessons, which we describe in this paper. As matters stand now, it seems that given errorless gravity data on 1′ by 1′ grid, a digital elevation model of a reasonable accuracy and no topographical density variations, the Stokes-Helmert approach as realised in the UNB software suite is capable of delivering an accuracy of the geoid model of no constant bias, standard deviation of about 25 mm and a maximum range of about 200 mm. We note that the UNB software suite does not use any corrective measures, such as biases and tilts or surface fitting, so the resulting errors reflect only the errors in modelling the geoid.  相似文献   
998.
The Aïn Barbar area was at Langhian times the site of a terrestrleial high energy geothermal field related to acid Langhian magmatic activity. A granite body probably occurs at depth, as evidenced by microgranite and rhyolite dikes. The reservoir is made up of Upper Cretaceous Massylian flyschs, overlain by an impermeable cover of Oligo-Miocene Numidian flysch. Due to erosional unroofing, its thickness, initially on the order of one kilometer, was probably halved towards the termination of activity of the liquid-dominated geothermal field.Geothermal activity, which lasted about 1 Ma, developed in two stages:  相似文献   
999.
In 2D-multielectrode electrical surveys using the pole–pole array, the distance to ‘infinite electrodes' is actually finite. As a matter of fact, the available cable length generally imposes a poor approximation of theoretical location of these electrodes at infinity. This study shows that in most of the cases, the resulting apparent resistivity pseudosection is strongly distorted. Numerical simulation validated by field test also shows that a particular finite array provides results that are as close as possible to the ones of the ideal pole–pole array. This is achieved when two conditions that are weaker than an infinite location are fulfilled: (i) the ‘infinite electrodes' are placed symmetrically on both sides of the in-line electrodes with a spread angle of 30° and (ii) the length of ‘infinite lines' is at least 20 times the greatest distance between in-line electrodes. The electrical 2D image obtained with this enhanced array is the least distorted one with respect to the pole–pole image. The apparent resistivities are generally underestimated, but this deviation is almost homogeneous. Though the shift cannot be determined a priori, the interpretation of such an image with direct or inverse software designed for pole–pole data provides an accurate interpretation of the ground geometry.  相似文献   
1000.
The impacts of forest conversion on runoff generation in the tropics have received much interest, but scientific progress is still hampered by challenging fieldwork conditions and limited knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and water source dynamics of a pristine rainforest catchment in Costa Rica using end member mixing analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over a 4-week field campaign were combined with tritium data used to assess potential deeper groundwater flow pathways to the perennial stream. The streamflow composition was best captured using three end-members, namely throughfall, shallow (5–15 cm) and deeper (15–50 cm) soil water. We estimated the end-member contributions to the main stream and two tributaries using the two mixing approaches and found good agreement between results obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow contributions in the main stream (median 39% and 49% based on EMMA and MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 19%). The two tributaries had even greater shallow soil water contributions relative to the main stream (83% and 74% for tributary A and 42% and 63% for tributary B). Tributary B had no detectable deep soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils and lower vegetation density compared to hillslope A). Despite the short sampling campaign and associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms in a humid tropical catchment. Our results also provide a first comparison of two increasingly used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water source partitioning in this tropical, volcanic rainforest environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号