首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1808篇
  免费   81篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   388篇
地质学   715篇
海洋学   134篇
天文学   288篇
综合类   8篇
自然地理   150篇
  2024年   5篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   99篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1895条查询结果,搜索用时 15 毫秒
91.
The application of numerical models for the simulation of coastal hydro-and sediment dynamics requires model verification, calibration and validation with field data. Yet, no commonly accepted rules for the evaluation of sediment transport models exist. This paper discusses the significance of statistical parameters and their limitations considering common time lags in tidal environments. It is shown that the occasionally used discrepancy ratio lacks quantitative and qualitative information on model performance, as the time context information on time series characteristics is lost. As an initial measure of association, the simple linear correlation coefficient r2 is proposed. To account for time lag errors in suspended transport models, a separate cross-correlation analysis for the flood and ebb tidal phase is proposed. For a comparison with other model applications, a concluding rating of model performance can be expressed by a dimensionless error definition which takes into account the quality of field data.  相似文献   
92.
93.
Service oriented architectures (SOA) are widely used nowadays. As the name implies such architectures rely on services. Germany developed a marine‐specific service oriented data infrastructure (MDI‐DE – Marine Dateninfrastruktur Deutschland) from 2010 to 2013. The services in MDI‐DE can contribute to fulfilling reporting commitments for various European and national legislation. The services of MDI‐DE (just like other services affected, for instance, by INSPIRE) have to meet specific requirements regarding performance, availability and conformity (quality of service, QoS). Although SOA is an important field in scientific research there are very few publications and studies available on QoS, especially regarding INSPIRE requirements. The services of MDI‐DE were analyzed using various existing tools. Their usefulness to reflect where either the aspect's performance, availability or conformity needs improvement was partly verified. Due to varying results and the neglect of some services for various reasons it can be stated that the more tools are used, the more conclusive the outcome. Furthermore, service quality was not coherent when measured with different tools. This means that measuring QoS in terms of INSPIRE will be very difficult to do in the future and there is the danger that people will choose the tools with which their services perform best.  相似文献   
94.
Spherical harmonic synthesis (SHS) of gravity field functionals at the Earth’s surface requires the use of heights. The present study investigates the gradient approach as an efficient yet accurate strategy to incorporate height information in SHS at densely spaced multiple points. Taylor series expansions of commonly used functionals quasigeoid heights, gravity disturbances and vertical deflections are formulated, and expressions of their radial derivatives are presented to arbitrary order. Numerical tests show that first-order gradients, as introduced by Rapp (J Geod 71(5):282–289, 1997) for degree 360 models, produce cm- to dm-level RMS approximation errors over rugged terrain when applied with EGM2008 to degree 2190. Instead, higher-order Taylor expansions are recommended that are capable of reducing approximation errors to insignificance for practical applications. Because the height information is separated from the actual synthesis, the gradient approach can be applied along with existing highly efficient SHS routines to compute surface functionals at arbitrarily dense grid points. This confers considerable computational savings (above or well above one order of magnitude) over conventional point-by-point SHS. As an application example, an ultra-high resolution model of surface gravity functionals (EurAlpGM2011) is constructed over the entire European Alps that incorporates height information in the SHS at 12,000,000 surface points. Based on EGM2008 and residual topography data, quasigeoid heights, gravity disturbances and vertical deflections are estimated at ~200m resolution. As a conclusion, the gradient approach is efficient and accurate for high-degree SHS at multiple points at the Earth’s surface.  相似文献   
95.
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies.  相似文献   
96.
For historical reasons many national mapping agencies store their topographic data in a dual system consisting of a Digital Landscape Model (DLM) and a Digital Terrain Model (DTM). The DLM contains 2D vector data representing objects on the Earth’s surface, such as roads and rivers, whereas the DTM is a 2.5D representation of the related height information, often acquired by Airborne Laser Scanning (ALS). Today, many applications require reliable 3D topographic data. Therefore, it is advantageous to convert the dual system into a 3D DLM. However, as a result of different methods of acquisition, processing, and modelling, the registration of the two data sets often presents difficulties. Thus, a straightforward integration of the DTM and DLM might lead to inaccurate and semantically incorrect 3D objects.In this paper we propose a new method for the fusion of the two data sets that exploits parametric active contours (also called snakes), focusing on road networks. For that purpose, the roads from a DLM initialise the snakes, defining their topology and their internal energy, whereas ALS features exert external forces to the snake via the image energy. After the optimisation process the shape and position of the snakes should coincide with the ALS features. With respect to the robustness of the method several known modifications of snakes are combined in a consistent framework for DLM road network adaptation. One important modification redefines the standard internal energy and thus the geometrical model of the snake in order to prevent changes in shape or position not caused by significant features in the image energy. For this purpose, the initial shape is utilized creating template-like snakes with the ability of local adaptation. This is one crucial point towards the applicability of the entire method considering the strongly varying significance of the ALS features. Other concepts related to snakes are integrated which enable our method to model network and ribbon-like characteristics simultaneously. Additionally, besides ALS road features information about context objects, such as bridges and buildings, is introduced as part of the image energy to support the optimisation process. Meaningful examples are presented that emphasize and evaluate the applicability of the proposed method.  相似文献   
97.
User generated content such as the georeferenced images and their associated tags found in Flickr provides us with opportunities to explore how the world is described in the non‐scientific, everyday language used by contributors. Geomorphometry, the quantitative study of landforms, provides methods to classify Digital Elevation Models (DEMs) according to attributes such as slope and convexity. In this article we compare the terms used in Flickr and Geograph in Great Britian to describe georeferenced images to a quantitative, unsupervised classification of a DEM, using a well established method, and explore the variation of terms across geomorphometric classes and space. Anthropogenic terms are primarily associated with more gentle slopes, while terms which refer to objects such as mountains and waterfalls are typical of steeper slopes. Terms vary both across and within classes, and the source of the user generated content has an influence on the type of term used with Geograph, a collection which aims to document the geography of Great Britain, dominated by features which might be observed on a map.  相似文献   
98.
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection, the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10−3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10−2 level with this method.  相似文献   
99.
In geography, invariant aspects of sketches are essential to study because they reflect the human perception of real‐world places. A person's perception of a place can be expressed in sketches. In this article, we quantitatively and qualitatively analyzed the characteristics of single objects and characteristics among objects in sketches and the real world to find reliable invariants that can be used to establish references/correspondences between sketch and world in a matching process. These characteristics include category, shape, name, and relative size of each object. Moreover, quantity and spatial relationships—such as topological, ordering, and location relationships—among all objects are also analyzed to assess consistency between sketched and actual places. The approach presented in this study extracts the reliable invariants for query‐by‐sketch and prioritizes their relevance for a sketch‐map matching process.  相似文献   
100.
This paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May–15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/−6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately reproducing fast zenith wet delay (ZWD) variations. The ZWD estimates could be improved when mean post-fit phase residuals were removed. Several methodologies for integrating zenith lidar observations into the GPS data processing are also presented. The final method consists in using lidar wet delays for correcting a priori the GPS phase observations and estimating a scale factor for the lidar wet delays jointly with the GPS station position. The estimation of this scale factor allows correcting for a mis-calibration in the lidar data and provides in the same way an estimate of the Raman lidar instrument constant. The agreement of this constant with an independent determination using radiosonde data is at the level of 1–4%. The lidar wet delays were derived by ray-tracing from zenith pointing measurements: further improvement in GPS positioning is expected from slant path lidar measurements that would properly account for water vapor anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号