首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1464篇
  免费   92篇
  国内免费   20篇
测绘学   66篇
大气科学   106篇
地球物理   355篇
地质学   466篇
海洋学   109篇
天文学   322篇
综合类   2篇
自然地理   150篇
  2022年   2篇
  2021年   32篇
  2020年   34篇
  2019年   40篇
  2018年   56篇
  2017年   39篇
  2016年   51篇
  2015年   56篇
  2014年   55篇
  2013年   83篇
  2012年   67篇
  2011年   82篇
  2010年   62篇
  2009年   98篇
  2008年   72篇
  2007年   78篇
  2006年   86篇
  2005年   78篇
  2004年   76篇
  2003年   63篇
  2002年   56篇
  2001年   46篇
  2000年   31篇
  1999年   39篇
  1998年   35篇
  1997年   13篇
  1996年   13篇
  1995年   14篇
  1994年   12篇
  1993年   14篇
  1992年   4篇
  1991年   8篇
  1990年   1篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
  1890年   1篇
排序方式: 共有1576条查询结果,搜索用时 15 毫秒
991.
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher‐resolution data sources are available, but they are associated with greater computational requirements and expertise. Here, we investigate whether the Multisensor Precipitation Estimator (MPE or Stage IV Next‐Generation Radar) data improve the accuracy of streamflow simulations using the Soil and Water Assessment Tool (SWAT), compared with rain gauge data. Simulated flows from 2002 to 2010 at five timesteps were compared with observed flows for four nested subwatersheds of the Neuse River basin in North Carolina (21‐, 203‐, 2979‐, and 10 100‐km2 watershed area), using a multi‐objective function, informal likelihood‐weighted calibration approach. Across watersheds and timesteps, total gauge precipitation was greater than radar precipitation, but radar data showed a conditional bias of higher rainfall estimates during large events (>25–50 mm/day). Model parameterization differed between calibrations with the two datasets, despite the fact that all watershed characteristics were the same across simulation scenarios. This underscores the importance of linking calibration parameters to realistic processes. SWAT simulations with both datasets underestimated median and low flows, whereas radar‐based simulations were more accurate than gauge‐based simulations for high flows. At coarser timesteps, differences were less pronounced. Our results suggest that modelling efforts in watersheds with poor rain gauge coverage can be improved with MPE radar data, especially at short timesteps. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
992.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (??3?ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a bicycle traverse of the campus were combined with modeled spatial temperature data simulated from a three-dimensional microclimate model (ENVI-met 3.1). A distinct park cool island, with mean observed magnitudes of 0.7?C3.6°C, was documented for both traverse and model data with larger cooling intensities measured closer to surface level. Modeled results possessed varying but generally reasonable accuracy in simulating both spatial and temporal temperature data, although some systematic errors exist. A combination of several factors, such as variations in surface thermal properties, urban geometry, building orientation, and soil moisture, was likely responsible for influencing differential urban and non-urban near-surface temperatures. A strong inversion layer up to 1?m over non-urban surfaces was detected, contrasting with near-neutral lapse rates over urban surfaces. A key factor in the spatial expansion of the park cool island was the advection of cooler park air to adjacent urban surfaces, although this effect was mostly concentrated from 0- to 1-m heights over urban surfaces that were more exposed to the atmosphere.  相似文献   
994.
Amphibole, while uncommon as a phenocryst in arc lavas, is increasingly recognized as a key constituent in the petrogenesis of arc magmas. Fractional crystallization of water-saturated arc magmas in the lower crust can yield substantial volumes of amphibole cumulates that, depending on the pressure of crystallization, may also contain garnet. Fractionation of this higher pressure assemblage has been invoked as a possible mechanism in the production of magmas that contain an adakitic signature. This study examines newly dated Late-Oligocene (25.37 ± 0.13 Ma) hypabyssal amphibole-rich andesites from Cerro Patacon in the Panama Canal region. These andesites contain nodules of amphibole cumulates that are ~4–6 cm in diameter and are almost entirely composed of 5–10-mm amphibole crystals (dominantly ferri-tschermakite). Geochemical variations, optical and chemical zoning of the Cerro Patacon amphiboles are consistent with their evolution in a crystal mush environment that had at least one recharge event prior to entrainment in the host andesite. Amphiboles hosted within the cumulate nodules differ from those hosted in the Cerro Patacon andesite and contain consistently higher values of Ti. We suggest these nodules represent the early stages of fractionation from a water-saturated magma. Cerro Patacon andesites have REE concentrations that plot at the most depleted end of Central American Arc magmas and exhibit a distinctive depletion in the middle REE. These geochemical and petrographic observations strongly support significant amphibole fractionation during formation of the Cerro Patacon andesite, consistent with the petrographic evidence. Fractionation of water-saturated magmas is a mechanism by which adakitic compositions may be produced, and the Cerro Patacon andesites do exhibit adakite-like geochemical characteristics (e.g., elevated Sr/Y; 28–34). However, the relatively elevated concentrations of Y and HREE indicate garnet was not stable in the fractionating assemblage during this early stage of arc development.  相似文献   
995.
Clinopyroxene is a major host for lithophile elements in the mantle lithosphere, and therefore it is critical whether we are to understand the constraints that this mineral puts on mantle evolution and melt generation. This study presents a detailed in situ trace element and Sr isotope study of clinopyroxene, amphibole and melt from two spinel lherzolites from the Middle Atlas Mountains, Morocco. The results show that there is limited, but discernable, Sr isotopic variation between clinopyroxene crystals within these xenoliths [87Sr/86Sr ranging from 0.703416 (±11 2SE) to 0.703681 (±12 2SE)]. Trace element patterns show similar interelement fractionation with LREE enrichment, but there is a considerable range in terms of elemental concentration (e.g. over 100 ppm in Sr concentrations). Observed modal clinopyroxene is far more abundant than that predicted from estimates of melt depletion. This along with isotope and trace element variability found in these xenoliths supports a multistage metasomatic process in which clinopyroxene and amphibole are recent secondary additions to the lithospheric mantle. Elemental systematics indicate that the metasomatic mineral assemblage has most recently equilibrated with a carbonatitic melt prior to inclusion in the host basalt. The clinopyroxene from this study is typical of global off-craton clinopyroxene in terms of Sr isotope composition, suggesting that the majority of clinopyroxene in off-craton settings may have a recent metasomatic origin. These findings indicate that caution is required when using peridotite xenoliths to estimate the degree of elemental enrichment in the subcontinental lithosphere.  相似文献   
996.
By applying a number of analytical techniques across a spectrum of spatial scales (centimeter to micrometer) in juvenile components, we show that the Cerro Galán volcanic system has repeatedly erupted magmas with nearly identical geochemistries over >3.5 Myr. The Cerro Galán system produced nine ignimbrites (∼5.6 to 2 Ma) with a cumulative volume of >1,200 km3 (DRE; dense rock equivalent) of calc-alkaline, high-K rhyodacitic magmas (68–71 wt.% SiO2). The mineralogy is broadly constant throughout the eruptive sequence, comprising plagioclase, quartz, biotite, Fe–Ti oxides, apatite, and titanite. Early ignimbrite magmas also contained amphibole, while the final eruption, the most voluminous Cerro Galán ignimbrite (CGI; 2.08 ± 0.02 Ma) erupted a magma containing rare amphibole, but significant sanidine. Each ignimbrite contains two main juvenile clast types; dominant “white” pumice and ubiquitous but subordinate “grey” pumice. Fe–Ti oxide and amphibole-plagioclase thermometry coupled with amphibole barometry suggest that the grey pumice originated from potentially hotter and deeper magmas (800–840°C, 3–5 kbar) than the more voluminous white pumice (770–810°C, 1.5–2.5 kbar). The grey pumice is interpreted to represent the parental magmas to the Galán system emplaced into the upper crust from a deeper storage zone. Most inter-ignimbrite variations can be accounted for by differences in modal mineralogy and crystal contents that vary from 40 to 55 vol.% on a vesicle-free basis. Geochemical modeling shows that subtle bulk-rock variations in Ta, Y, Nb, Dy, and Yb between the Galán ignimbrites can be reconciled with differences in amounts of crystal fractionation from the “grey” parent magma. The amount of fractionation is inversely correlated with volume; the CGI (∼630 km3) and Real Grande Ignimbrite (∼390 km3) return higher F values (proportion of liquid remaining) than the older Toconquis Group ignimbrites (<50 km3), implying less crystal fractionation took place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically “buffered”, producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.  相似文献   
997.
Failed magmatic eruptions: late-stage cessation of magma ascent   总被引:4,自引:2,他引:2  
When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: “deep intrusion”, “shallow intrusion”, “sluggish/viscous magmatic eruption”, and “rapid, often explosive magmatic eruption”. We define “failed eruptions” as instances in which magma reaches but does not pass the “shallow intrusion” stage, i.e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.  相似文献   
998.
对于地震物理学和断裂运动研究而言,探索断裂带构造和地震行为之间的联系是至关重要的。地震代表滑动行为的一个极端;摩擦熔融和假玄武玻璃为动力破裂过程中的局部滑动提供了野外证据[1-3]。无震滑动则  相似文献   
999.
Planktonic foraminifera are widely utilized for the biostratigraphy of Cretaceous and Cenozoic marine sediments and are a fundamental component of Cenozoic chronostratigraphy. The recent enhancements in deep sea drilling recovery, multiple coring and high resolution sampling both offshore and onshore, has improved the planktonic foraminiferal calibrations to magnetostratigraphy and/or modified species ranges. This accumulated new information has allowed many of the planktonic foraminiferal bioevents of the Cenozoic to be revised and the planktonic foraminiferal calibrations to be reassessed. We incorporate these developments and amendments into the existing biostratigraphic zonal scheme.In this paper we present an amended low-latitude (tropical and subtropical) Cenozoic planktonic foraminiferal zonation. We compile 187 revised calibrations of planktonic foraminiferal bioevents from multiple sources for the Cenozoic and have incorporated these recalibrations into a revised Cenozoic planktonic foraminiferal biochronology. We review and synthesize these calibrations to both the geomagnetic polarity time scale (GPTS) of the Cenozoic and astronomical time scale (ATS) of the Neogene and late Paleogene. On the whole, these recalibrations are consistent with the previous work; however, in some cases, they have led to major adjustments to the duration of biochrons. Recalibrations of the early–middle Eocene first appearance datums of Globigerinatheka kugleri, Hantkenina singanoae, Guembelitrioides nuttalli and Turborotalia frontosa have resulted in large changes in the durations of Biochrons E7, E8 and E9. We have introduced (upper Oligocene) Zone O7 utilizing the biostratigraphic utility of ‘Paragloborotalia’ pseudokugleri. For the Neogene Period, major revisions are applied to the fohsellid lineage of the middle Miocene and we have modified the criteria for recognition of Zones M7, M8 and M9, with additional adjustments regarding the Globigerinatella lineage to Zones M2 and M3. The revised and recalibrated datums provide a major advance in biochronologic resolution and a template for future progress of the Cenozoic time scale.  相似文献   
1000.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号