首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1288篇
  免费   64篇
  国内免费   18篇
测绘学   62篇
大气科学   105篇
地球物理   327篇
地质学   364篇
海洋学   89篇
天文学   285篇
综合类   2篇
自然地理   136篇
  2023年   1篇
  2022年   1篇
  2021年   32篇
  2020年   31篇
  2019年   38篇
  2018年   51篇
  2017年   36篇
  2016年   47篇
  2015年   50篇
  2014年   49篇
  2013年   76篇
  2012年   62篇
  2011年   68篇
  2010年   54篇
  2009年   84篇
  2008年   66篇
  2007年   64篇
  2006年   75篇
  2005年   68篇
  2004年   67篇
  2003年   55篇
  2002年   52篇
  2001年   43篇
  2000年   27篇
  1999年   34篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1370条查询结果,搜索用时 0 毫秒
131.
For decades, stochastic modellers have used computerized random number generators to produce random numeric sequences fitting a specified statistical distribution. Unfortunately, none of the random number generators we tested satisfactorily produced the target distribution. The result is generated distributions whose mean even diverges from the mean used to generate them, regardless of the length of run. Non‐uniform distributions from short sequences of random numbers are a major problem in stochastic climate generation, because truly uniform distributions are required to produce the intended climate parameter distributions. In order to ensure generation of a representative climate with the stochastic weather generator CLIGEN within a 30‐year run, we tested the climate output resulting from various random number generators. The resulting distributions of climate parameters showed significant departures from the target distributions in all cases. We traced this failure back to the uniform random number generators themselves. This paper proposes a quality control approach to select only those numbers that conform to the expected distribution being retained for subsequent use. The approach is based on goodness‐of‐fit analysis applied to the random numbers generated. Normally distributed deviates are further tested with confidence interval tests on their means and standard deviations. The positive effect of the new approach on the climate characteristics generated and the subsequent deterministic process‐based hydrology and soil erosion modelling are illustrated for four climatologically diverse sites. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
132.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
133.
The natural heterogeneity of water and solute movement in hillslope soils makes it difficult to accurately characterize the transport of surface‐applied pollutants without first gathering spatially distributed hydrological data. This study examined the application of time‐domain reflectometry (TDR) to measure solute transport in hillslopes. Three different plot designs were used to examine the transport of a conservative tracer in the first 50 cm of a moderately sloping soil. In the first plot, which was designed to examine spatial variability in vertical transport in a 1·2 m2 plot, a single probe per meter was found to adequately characterize vertical solute travel times. In addition, a dye and excavation study in this plot revealed lateral preferential flow in small macropores and a transport pattern where solute is focused vertically into preferential flow pathways. The bypass flow delivers solute deeper in the soil, where lateral flow occurs. The second plot, designed to capture both vertical and lateral flow, provided additional evidence confirming the flow patterns identified in the excavation of the first plot. The third plot was designed to examine lateral flow and once again preferential flow of the tracer was observed. In one instance rapid solute transport in this plot was estimated to occur in as little as 3% of the available pore space. Finally, it was demonstrated that the soil anisotropy, although partially responsible for lateral subsurface transport, may also homogenize the transport response across the hillslope by decreasing vertical solute spreading. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
134.
We present evidence of a large lake (Glacial Lake Victoria) that existed in Victoria Valley in the dry valleys region of Antarctica between at least 20 000 and 8600 14C yr BP. At its highstands, Glacial Lake Victoria covered 100 km2 and was ca. 200 m deep. The chronology for lake‐level changes comes from 87 AMS radiocarbon dates of lacustrine algae preserved in deltas and glaciolacustrine deposits that extend up to 185 m above present‐day lakes on the valley floor. The existence of Glacial Lake Victoria, as well as other large lakes in the dry valleys, indicates a climate regime significantly different from that of today at the last glacial maximum and in the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
135.
136.
137.
138.
The full set of high-resolution observations from the Galileo Ultraviolet Spectrometer (UVS) is analyzed to look for spectral trends across the surface of Europa. We provide the first disk-resolved map of the 280 nm SO2 absorption feature and investigate its relationship with sulfur and electron flux distributions as well as with surface features and relative surface ages. Our results have implications for exogenic and endogenic sources. The large-scale pattern in SO2 absorption band depth is again shown to be similar to the pattern of sulfur ion implantation, but with strong variations in band depth based on terrain. In particular, the young chaos units show stronger SO2 absorption bands than expected from the average pattern of sulfur ion flux, suggesting a local source of SO2 in those regions, or diapiric heating that leads to a sulfur-rich lag deposit.While the SO2 absorption feature is confined to the trailing hemisphere, the near UV albedo (300-310 nm) has a global pattern with a minimum at the center of the trailing hemisphere and a maximum at the center of the leading hemisphere. The global nature of the albedo pattern is suggestive of an exogenic source, and several possibilities are discussed. Like the SO2 absorption, the near UV albedo also has local variations that depend on terrain type and age.  相似文献   
139.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   
140.
The belated realisation that ribbed (Rogen) moraines form such an integral part of Irish geomorphology, and the piecemeal approach to previous drumlin mapping, is probably responsible for the highly contrasting views of palaeoflow patterns of the Irish Ice Sheet. Using a high resolution (25 m) digital elevation model we present morphological maps of a large part (100 × 100 km) of the so‐called ‘Drumlin Belt’ of north central Ireland. The landforms comprise mostly ribbed moraine much larger than found elsewhere (up to 16 km in length), which in places are superimposed on each other. Contrary to most prior assessments we find the bedform record to contain numerous and overlapping episodes of bed formation (ribbed moraine, drumlins and crag‐and‐tails) that provide a palimpsest record of changing flow geometries. These demonstrate an ice sheet with a centre of mass and flow geometry that changed during growth and decay. Using distinctive flow patterns and relative age relationships between them we reconstruct ice sheet evolution into four phases during a single glacial cycle. In phase 1 (early in the glacial cycle), Scottish and local ice coalesced to form a northeast‐centred Irish Ice Sheet. As it grew its centre of mass migrated southwards, culminating in a major N–S divide positioned down the east of Ireland (phase 2, ca. Last Glacial Maximum). During retreat, the centre of mass migrated at least 120 km northwards and became established in northwest Ireland and at this point a dramatic bedforming event produced one of the world's largest and most contiguous ribbed moraine fields (phase 3). Final deglaciation is thought to be by fragmentation into many topographically controlled minor ice‐caps (phase 4). Rather than any dramatic or unexpected behaviour, the reconstructed phases indicate a relatively predictable pattern of ice sheet growth and decay with changes in centres of mass, and does not require major readvances or ice‐stream events. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号