首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   6篇
地质学   14篇
天文学   1篇
自然地理   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   3篇
  1997年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
This paper deals with the evaluation of seismic site effects due to the local topographical and geotechnical characteristics. The amplification of surface motions is calculated by a numerical method combining finite elements in the near field and boundary elements in the far field (FEM/BEM). The numerical technique is improved by time truncation. In the first part of this article, the accuracy and the relevance of this optimized method are presented. Moreover, parametric studies are done on slopes, ridges and canyons to characterize topographical site effects. The second part deals with sedimentary valleys. The complexity of the combination of geometrical and sedimentary effects is underlined. Extensive parametrical studies are done to discriminate the topographical and geotechnical effects on seismic ground movement amplifications in two-dimensional irregular configurations. Characteristic coefficients are defined to predict the amplifications of horizontal displacements. The accuracy of this quantitative evaluation technique is tested and discussed.  相似文献   
12.
The damage model presented in this article (named ‘THHMD’ model) is dedicated to non‐isothermal unsaturated porous media. It is formulated by means of three independent strain state variables, which are the thermodynamic conjugates of net stress, suction and thermal stress. The damage variable is a second‐order tensor. Stress/strain relationships are derived from Helmholtz free energy, which is assumed to be the sum of damaged elastic potentials and ‘crack‐closure energies’. Damage is assumed to grow with tensile strains due to net stress, with pore shrinkage due to suction and with thermal dilatation. Specific conductivities are introduced to account for the effects of cracking on the intensification and on the orientation of liquid water and vapor flows. These conductivities depend on damage and internal length parameters. The mechanical aspects of the THHMD model are validated by comparing the results of a triaxial compression test with experimental measurements found in the literature. Parametric studies of damage are performed on three different heating problems related to nuclear waste disposals. Several types of loading and boundary conditions are investigated. The thermal damage potential is thoroughly studied. The THHMD model is expected to be a useful tool in the assessment of the Excavation Damaged Zone, especially in the vicinity of nuclear waste repositories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
13.
A photometric analysis of the short-period Algol eclipsing binary system BF Velorum based for the first time on complete BVRI CCD light curves is presented. The new photometric solution obtained with the Wilson-Devinney program reveals that BF Vel is a near-contact semi-detached system with its secondary component filling its Roche lobe. Moreover, we discovered pulsations of one member of the binary system, the analysis of which shows main frequencies of 44.9386 and 33.6731 cycles/day. Absolute elements of the system were calculated, and the evolutionary status of its members was estimated.   相似文献   
14.
A method is proposed to calculate the distribution of energy during the quasi-static confined comminution of particulate assemblies. The work input, calculated by integrating the load-displacement curve, is written as the sum of the elastic deformation energy, the breakage energy and the redistribution energy. Experimental results obtained on samples subjected to compression stresses ranging between 0.4 and 92 MPa are used to calibrate the model. The elastic energy stored in the samples is obtained by simulating the compression test on the final particle size distributions (PSDs) with the discrete element method and by extracting the contact forces. A PSD evolution law is proposed to account for particle breakage. The PSD is related to the total particle surface in the sample, which allows calculating the breakage energy. The redistribution energy, which comprises the kinetic energy of particles being rearranged and the friction energy dissipated at contacts, is obtained by subtracting the elastic energy and breakage energy from the work input. Results show that: (1) at least 60% of the work input is dissipated by particle redistribution; (2) the fraction of elastic deformation energy increases, and the fraction of redistribution energy decreases as the compression stress increases; (3) the breakage energy accounts for less than 5% of the total input energy, and this value is independent of the compressive stress; (4) the energy dissipated by redistribution is between 14 and 30 times larger than the breakage energy.  相似文献   
15.
This paper deals with the evaluation of seismic site effects due to the local topographical and geotechnical characteristics. The amplification of surface motions is calculated by a numerical method combining finite elements in the near field and boundary elements in the far field (FEM/BEM). The numerical technique is improved by time truncation. In the first part of this article, the accuracy and the relevance of this optimized method are presented. Moreover, parametric studies are done on slopes, ridges and canyons to characterize topographical site effects. The second part deals with sedimentary valleys. The complexity of the combination of geometrical and sedimentary effects is underlined. Extensive parametrical studies are done to discriminate the topographical and geotechnical effects on seismic ground movement amplifications in two-dimensional irregular configurations. Characteristic coefficients are defined to predict the amplifications of horizontal displacements. The accuracy of this quantitative evaluation technique is tested and discussed.  相似文献   
16.
Fear of liability from the 1980 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) has prompted developers to build pre...  相似文献   
17.
18.
Time series of current velocity profiles and thermistor chains were obtained throughout a cross-bay transect for ~90 days for the purpose of comparing observed wind-driven stratified flows to theory. This study concentrates on the synoptic scale wind and its influence on the bay’s circulation. The maximum water column stratification was 3–4 °C/m throughout the deployment and influenced wind-driven flows. Low-pass filtered flows showed more complicated structures than those expected from theory: a depth-dependent recirculating structure with the along-bay flow over one half of the transect moving in opposite direction to the other half. Analysis of complex empirical orthogonal functions indicated that the first six modes explained 80 % of the flow variability. Therefore, there was no predominantly energetic mode of variability. All modes exhibited a rich spatial structure with vertical and lateral variations. For all modes there was vertically sheared bidirectional flow, as expected from theory, with the largest eigenvector (mode value) asymmetrically influenced by Earth’s rotation and advection of momentum.  相似文献   
19.
A thermodynamic framework is proposed to couple the effect of mechanical stress and temperature on crack opening and closure in rocks. The model is based on continuum damage mechanics, with damage defined as the second-order crack density tensor. The free energy of the damaged rock is expressed as a function of deformation, temperature, and damage. The damage criterion captures mode I crack propagation, the reduction in toughness due to heating, and the increase in energy release rate with cumulated damage. Crack closure is modeled through unilateral effects produced on rock stiffness. The model was calibrated and verified against published experimental data. Thermo-mechanical crack opening (resp. closure) was studied by simulating a triaxial compression test (resp. uniaxial extension test), including a thermal loading phase. The degradation of stiffness due to tensile stress and recovery of stiffness induced by both mechanical and thermo-mechanical unilateral effects are well captured. The thermo-mechanical energy release rate increases with thermal dilation and also decreases with ambient temperature. It was observed that there is a temperature threshold, below which the rock behaves elastically. A parametric study also showed that the model can capture hardening and softening during thermo-mechanical closure (for specific sets of parameters). These numerical observations may guide the choice of rock material used in geotechnical design, especially for nuclear waste disposals or compressed-air storage facilities.  相似文献   
20.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号