首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   34篇
  国内免费   214篇
测绘学   6篇
大气科学   3篇
地球物理   55篇
地质学   271篇
海洋学   25篇
天文学   9篇
综合类   9篇
自然地理   20篇
  2023年   1篇
  2021年   1篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   14篇
  2008年   10篇
  2007年   23篇
  2006年   23篇
  2005年   97篇
  2004年   45篇
  2003年   22篇
  2002年   15篇
  2001年   10篇
  2000年   24篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   1篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1933年   2篇
  1928年   1篇
排序方式: 共有398条查询结果,搜索用时 31 毫秒
71.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   
72.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
73.
The aim of this paper was to propose a design guideline for using visco‐elastic dampers for the control of building structures subjected to earthquake loading as well as suspension roof structures subjected to wind loading. The active control algorithm was used to calculate the control forces. Based on the single‐mode approach the control forces were transformed to the forces which visco‐elastic dampers can provide. Application of the method to the design of the building structure with passive damping devices in the bracing system and to the suspension roof with dampers was studied. Through the application of optimal control theory a systematic design procedure to implement dampers in structures is proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
74.
75.
76.
77.
The objective of this paper is to develop an online system parameter estimation technique from the response measurements through using the recursive covariance‐driven stochastic subspace identification (SSI‐COV) approach. In developing the recursive SSI‐COV, to avoid time‐consumption of singular value decomposition in recursive SSI, the extended instrumental variable version of the projection approximation subspace tracking method is used in SSI‐COV. Besides, to reduce the effect of noise on the results of identification, the preprocessing of data using recursive singular spectrum analysis technique is also presented to remove the noise contaminant measurements to enhance the stability of data analysis. On the basis of the proposed method, both the ambient vibration and seismic response data of a tower (Canton Tower) are used to observe the time‐varying system natural frequencies of a tower from its operating condition. Results from using off‐line SSI‐COV method under normal operating condition are also presented. Comparison on the identified time‐varying dynamic characteristics of the tower under normal operating condition and earthquake response of distanced earthquake event is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
78.
A frequency response function change (FRFC) method to detect damage location and extent based on the change in the frequency response functions of a shear building under the effects of ground excitation was proposed in this paper. The damage identification equation was derived from the motion equations of the system before and after the occurrence of the damage. Efforts to make the FRFC method less model‐dependent were made. Intact system matrices, which could be estimated using the measured data without the need for an analytical model, and the frequency response functions were required for the FRFC method. The effects of measurement noise and model parameter error in the FRFC method were studied numerically. The proposed FRFC method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
79.
Reinforced concrete structure may exhibit significant inelastic hysteretic behavior when subject to strong earthquake excitation. To investigate such an inelastic behavior, in this study, a new system identification technique is applied by using the deteriorating distributed element (DDE) model to simulate the hysteretic behavior of a degrading structure. Through the advanced signal processing technique, the multiple singular spectrum analysis (SSA) and the nonlinear SSA, the recorded inelastic restoring force of a deteriorating structure can be decomposed into several independent additive components in its sequentially degrading order and with decreasing weight. With each decomposed hysteresis loop, the model parameters of the DDE model are identified. The evolutionary properties of the progressive stiffness degradation behavior of reinforced concrete structure can be observed from the identified model parameters. Finally, comparison on the physical properties of the identified DDE model with respect to the seismic response data of the deteriorating structure is also discussed. The result shows that the proposed identification technique can have a good estimation on the seismic behavior of the degrading structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
80.
A virtual wave gauge (VWG) technique based on stereo imaging is developed to remotely measure water wave height, period, and direction. VWG minimizes computational costs by directly tracking the elevation of the water surface at selected points of interest using a Eulerian based dynamic searching algorithm. Results show that the VWG technique developed in this paper dramatically improves efficiency by two orders of magnitude compared to the traditional Lagrangian–Eulerian based point cloud method of stereo image processing. VWG is tested against traditional wave wire gauges to within 98% accuracy for significant wave height. Furthermore, the flexibility of the VWG is demonstrated in two field applications. First in an offshore breaking wave case, an array of VWGs is used to efficiently measure wave directionality. Second to investigate the reflection coefficient of a rock-mounted structure interacting with nearshore waves, linear and spatial VWG arrays are designed and implemented based on a priori information of the wave field from a preliminary VWG measurement. Overall, we demonstrate that the flexible and computational efficient VWG technique has the potential to make real-time remote stereo imaging wave measurements a reality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号