首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   5篇
地质学   7篇
海洋学   1篇
天文学   1篇
自然地理   10篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有27条查询结果,搜索用时 46 毫秒
11.
12.
Along the Rio Muni transform margin, the transition from continental to oceanic crust occurs across a region of approximately 75-km width. The crust in this transition region, termed proto-oceanic crust (POC), is neither purely oceanic nor continental in composition and structure. Improved seismic reflection images from the PROBE deep-imaging dataset, combined with gravity modelling, have shed new light on the structural architecture of the margin and the composition of the POC. On these newly migrated seismic reflection sections, four fracture zones associated with large steps in the Moho are identified, splitting the POC into three segments. Models in which these segments are composed of oceanic or stretched continental crust do not provide satisfactory predictions of the gravity anomaly. A model of serpentinized peridotite for two segments of POC, with the third segment composed of oceanic crust in between, does satisfy the observed gravity anomaly. Three alternative geological scenarios are proposed to explain the segmentation and composition of the POC: (a) serpentinized upper mantle becoming unroofed and emplaced at basement surface level along detachment surfaces confined to discrete segments by the fracture zones, (b) oblique-slip on transform faults that allow the circulation of water into the mantle and emplacement of serpentinized upper mantle material; or (c) intense faulting of anomalous oceanic crust as a result of magma depletion allowing hydrothermal circulation and the emplacement of serpentinized peridotites.  相似文献   
13.
Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ~2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ~1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ~1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier.  相似文献   
14.
The climate of the United States Northern Great Plains region is highly variable. Modelling of agriculture in this region and similar locations depends on the availability and quality of satellite and ground data for agro-climate variables. We evaluated tropical rainfall measuring mission (TRMM) multi-satellite preparation analysis (TMPA) precipitation, atmospheric infrared sounder (AIRS) surface air temperature, and AIRS relative air humidity (RH). A significant bias was found within the temperature and RH products and no bias but an insufficient rain event detection skill in the precipitation product (probability of detection ~0.3). A linear correction of the temperature product removed the bias as well as lowered the root mean square deviation (RMSD). The bias-corrections for RH led to increased RMSD or worse correlation. For precipitation, the correlation between the satellite product and ground data improved if cumulative precipitation or only precipitation during the growing season was used.  相似文献   
15.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   
16.
This paper reports the geotechnical aspects of an experimental programme investigating the permeability of shear zones in clay-rich sediments. Oedometric and ring shear permeameters were used to investigate and compare permeability anisotropy in consolidated and sheared silty clay, to simulate the behaviour of wall-rock sediments and shear zone sediments respectively. In line with other studies, consolidated silty clay was found to have no significant permeability anisotropy, although clay fabric anisotropy was well developed. However, sheared silty clay showed an increase in permeability anisotropy (rk = 3−16) with decreasing void ratio (e = 0.8−0.4), corresponding to effective stresses of 100 kPa to 4 MPa. This level of anisotropy was retained during shearing along the unloading path, and no significant dilation or enhancement of permeability was observed.  相似文献   
17.
The Colombian accretionary complex forms the active convergent margin of the North Andes block of South America beneath which the east Panama Basin of the Nazca plate is subducted at a rate of 50–64 km Myr?1. Multichannel seismic reflection data, collected as part of RRS Charles Darwin cruise CD40, image a series of well-developed forearc basins along the length of the margin, bounded on their oceanward side by an active accretionary complex and on their landward side by oceanward-dipping continental basement. Sedimentary sequences within the forearc basins indicate successive landward migration of the basin depocentre as the structural high bounding its oceanward edge is forced upward and landward by continued growth of the accretionary complex. Uplift beneath the oceanward side of the basins has resulted in progressive landward rotation of the older sedimentary sequences. Prominent seismic reflectors across the basins show a complex onlap–offlap relationship between successive sequences that reflects the interplay between tectonic uplift, sediment supply, differential sediment compaction and basement subsidence due to loading. A numerical model has been devised to investigate how Miocene to Recent forearc basin stratigraphy is controlled by progressive growth of the accretionary complex resulting in elevation of the outer-arc high and landward motion of the rear of the complex up the seaward-dipping backstop formed by the leading edge of the continental lithosphere. The effects of sediment accretion are modelled by treating the accretionary complex as a doubly vergent, noncohesive Coulomb wedge, where forces exerted by the proto- and retro-wedges must be balanced for the system to be in equilibrium. The model generates synthetic basin-fill architecture over a series of steps, each of which represents the deposition of individual sedimentary sequences and their subsequent deformation due to wedge growth. The model accounts for differential sediment compaction and the flexural response of the underlying lithosphere to changes in load distribution over time. Forearc basin evolution is simulated for various rates of sediment supply to the forearc and accretionary complex growth until the synthetic basin-fill geometry matches the observed geometry. The model enables either the rate of accretionary wedge growth or the rate of sediment supply to the forearc basin to be established. The technique is generally applicable to those convergent margins with forearc basins that have developed between an actively accreting wedge and a seaward-dipping backstop. Other examples include Peru, S. Chile, Sumatra and Barbados.  相似文献   
18.
Seismic reflection and GLORIA side-scan sonar data obtained on RRS Charles Darwin cruise CD64 reveal new information on the styles of deformation in the Gorringe Bank region, at the eastern end of the Azores–Gibraltar plate boundary. Previous studies suggest that Gorringe Bank was formed by the overthrusting of a portion of the African plate upon the Eurasian plate. The new seismic data show, however, that the most intensely deformed region is located south of Gorringe Bank, on the northern flanks of a NW–SE-trending submarine ridge which includes the Ampere and Coral Patch seamounts. The deformation is expressed as long-wavelength (up to 60  km), large-amplitude (up to 800  m) folds in the sediments and underlying acoustic basement, which in places are associated with one or more reverse faults, and as a fabric of short-wavelength folds (up to 3  km) with a NE trend. In contrast, the same sedimentary units when traced beneath the flanking plains are undeformed, except for some faults with a small throw (~30  m), some of which offset the seafloor. GLORIA data show that recent deformation is broadly distributed over the region. Structural trends rotate from 45° in the west to 70° in the east of the region, nearly perpendicular to the NW-verging plate motion vectors as determined from plate kinematic models. Flexure modelling suggests that a portion of Gorringe Bank has loaded 152  Ma oceanic lithosphere and that a maximum of 50  km of shortening has occurred at Gorringe Bank since the mid-Miocene. Our observations support a model in which there is no single plate boundary in the region, rather that the deformation is distributed over a 200–330  km wide zone.  相似文献   
19.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号