首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   11篇
  国内免费   20篇
测绘学   11篇
大气科学   100篇
地球物理   127篇
地质学   167篇
海洋学   189篇
天文学   31篇
综合类   10篇
自然地理   15篇
  2023年   2篇
  2022年   7篇
  2021年   16篇
  2020年   12篇
  2019年   8篇
  2018年   33篇
  2017年   37篇
  2016年   43篇
  2015年   45篇
  2014年   40篇
  2013年   38篇
  2012年   36篇
  2011年   54篇
  2010年   44篇
  2009年   35篇
  2008年   28篇
  2007年   28篇
  2006年   28篇
  2005年   23篇
  2004年   15篇
  2003年   20篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1997年   6篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
11.
The modeling and control of a variable liquid-column oscillator having a liquid filled U-tube with air chambers at its vertical columns are presented. As an ocean wave energy extracting device, the structure of the variable liquid-column oscillator (VLCO) is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, owing to an air spring effect caused by the dynamic pressure of air chambers, the amplitude of response of the VLCO becomes significantly amplified for a desired wave period. The governing equations for the motion of VLCO structure under wave excitation and the motion of liquid with an air spring effect caused by an air–liquid interaction are described by a series of nonlinear differential equations. A set of control parameters for extracting maximum power from various wave conditions is determined for the efficient operation of the VLCO. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the VLCO provides the most effective mode for extracting energy from the ocean wave.  相似文献   
12.
Ocean Science Journal - A carbonic anhydrase VII gene, encoding 277 amino acids, was identified in the intestinal tissue of pufferfish (Takifugu rubripes). The translated protein with an 833-bp...  相似文献   
13.
Doo Yong Choi  Chin H. Wu   《Ocean Engineering》2006,33(5-6):587-609
A new three-dimensional, non-hydrostatic free surface flow model is presented. For simulating water wave motions over uneven bottoms, the model employs an explicit project method on a Cartesian the staggered gird system to solve the complete three-dimensional Navier–Stokes equations. A bi-conjugated gradient method with a pre-conditioning procedure is used to solve the resulting matrix system. The model is capable of resolving non-hydrostatic pressure by incorporating the integral method of the top-layer pressure treatment, and predicting wave propagation and interaction over irregular bottom by including a partial bottom-cell treatment. Four examples of surface wave propagation are used to demonstrate the capability of the model. Using a small of vertical layers (e.g. 2–3 layers), it is shown that the model could effectively and accurately resolve wave shoaling, non-linearity, dispersion, fission, refraction, and diffraction phenomena.  相似文献   
14.

Other Index

List of Forthcoming Papers  相似文献   
15.
We present an observational evidence of the chromospheric activity on HR1099. The IUE spectra of HR 1099 were used for the ultraviolet photometry and for the intensity variation of chromospheric emission line. Ultraviolet light curves were made from the low and high dispersion IUE spectra and were compared with a optical light curve. We have analyzed the ultraviolet and optical light curves by the Wilson and Devinney computing code including dark spots. The intensity variation of Mg II emission line depends on the orbital phase. The maximum intensity of Mg II emission line occurs at the phase of light minimum where dark spot visibility is maximum due to strong chromospheric activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
16.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   
17.
Bivariate distributions have been recently employed in hydrologic frequency analysis to analyze the joint probabilistic characteristics of multivariate storm events. This study aims to derive practical solutions of application for the bivariate distribution to estimate design rainfalls corresponding to the desired return periods. Using the Gumbel mixed model, this study constructed rainfall–frequency curves at sample stations in Korea which provide joint relationships between amount, duration, and frequency of storm events. Based on comparisons and analyses of the rainfall–frequency curves derived from univariate and bivariate storm frequency analyses, this study found that conditional frequency analysis provides more appropriate estimates of design rainfalls as it more accurately represents the natural relationship between storm properties than the conventional univariate storm frequency analysis.  相似文献   
18.
This article demonstrates how system identification techniques can be successfully applied to a soil-structure interaction system in conjunction with the results of the forced vibration tests on the Hualien large-scale seismic test structure which was recently built in Taiwan for an international joint research. The parameters identified are the shear moduli of several near-field soil regions as well as Young's moduli of the shell sections of the structure. The soil-structure interaction system is represented by the finite element method combined with infinite element formulation for the unbounded layered soil medium. Preliminary investigations are carried out on the results of the static stress analysis for the soil medium and the results of the in-situ tests to divide the soil-structure system into several regions with homogeneous properties and to determine the lower and upper bounds of the parameters for the purpose of identification. Then two sets of parameters are identified for two principal directions based on the forced vibration test data by minimizing the estimation error using the constrained steepest descent method. The simulated responses for the forced vibration tests using the identified parameters show excellent agreement with the test data. The present estimated parameters are also found to be well compared with the average value of those by other researchers in the joint project.  相似文献   
19.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
20.
The effect of weathering on optically stimulated luminescence dating   总被引:2,自引:0,他引:2  
Optically stimulated luminescence (OSL) dating was applied to quartz samples recovered from the gravel sediments of deformed marine terrace at the Suryum site, southeastern Korea, but has yielded stratigraphically inconsistent ages. Micromorphological, chemical, and mineralogical analyses of the gravels indicate the possible influence of chemical weathering on the apparent OSL ages. In the course of weathering after emerging from beach environments, originally permeable gravels underwent infilling by halloysite-rich clays in their voids, export and import of radioactive elements, and loss of mechanical strength with the creation of a porosity within pebbles. Calculation based on the evolution of the weathering profile showed a severe fluctuation of dose rate caused by the change of water content and radioactive element concentrations. Samples recovered from the weathering profile inevitably include quartz grains derived from mechanically weakened pebbles or illuviated from the upper layer, making it difficult to determine the equivalent dose (De) values of exclusively depositional quartz sands. Quantitative evaluation of the change of fabric and chemistry of the sediments on the basis of pedologic insight significantly aids in the derivation of OSL ages consistent with geomorphology and other independent age controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号