首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8694篇
  免费   1965篇
  国内免费   1241篇
测绘学   478篇
大气科学   860篇
地球物理   3208篇
地质学   4180篇
海洋学   909篇
天文学   854篇
综合类   430篇
自然地理   981篇
  2024年   36篇
  2023年   106篇
  2022年   250篇
  2021年   334篇
  2020年   326篇
  2019年   504篇
  2018年   501篇
  2017年   602篇
  2016年   643篇
  2015年   629篇
  2014年   684篇
  2013年   753篇
  2012年   574篇
  2011年   610篇
  2010年   569篇
  2009年   459篇
  2008年   553篇
  2007年   464篇
  2006年   300篇
  2005年   335篇
  2004年   287篇
  2003年   278篇
  2002年   298篇
  2001年   302篇
  2000年   255篇
  1999年   201篇
  1998年   139篇
  1997年   157篇
  1996年   113篇
  1995年   104篇
  1994年   79篇
  1993年   74篇
  1992年   83篇
  1991年   40篇
  1990年   44篇
  1989年   39篇
  1988年   39篇
  1987年   17篇
  1986年   22篇
  1985年   15篇
  1984年   13篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   8篇
  1977年   7篇
  1976年   5篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Quasi-static testing is one of the most commonly used experimental methods for examining the seismic performance of structural members. However, consistent loading protocols for experimental seismic qualification of members in emerging steel frames such as self-centering braced frames (SCBFs) as well as in some conventional ones including buckling-restrained braced frames (BRBFs) are still lacking. This paper aims to propose standardized loading protocols based on time-history dynamic analysis on a series of prototype building frames, including steel SCBFs, BRBFs, and moment-resisting frames (MRFs), where both far-field and near-fault earthquakes are considered. The methodology for the development of the loading protocols involves ground motion selection and scaling, design and analysis of prototype buildings, analysis results processing, and rainflow cycle counting, together with extra justification steps. The proposed loading protocols are consistently derived based on the MCE-level seismic hazard and 84th percentile values of key seismic demand parameters. These parameters are number of damaging cycles Nt, maximum inter-story drift θmax, inter-story drift range Δθi, sum of inter-story drift range ΣΔθi, and residual inter-story drift θr. The analysis confirms the variations in these seismic demands imposed on the different structural systems under different types of ground motions, highlighting the necessity of developing separate loading protocols for the different cases. The assumptions, decisions, and judgments made during the development of the loading protocols are elaborated, and the conditions and restrictions are outlined. The rationality of the proposed loading protocols is further justified through demonstrating the cumulative distribution function and energy dissipation demand of the systems.  相似文献   
952.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
953.
954.
In this paper, a multiple‐input multiple‐output (MIMO) model‐based robust control scheme is proposed for the indirect control of both total alkalinity and the ratio (intermediate alkalinity)/(total alkalinity) by regulating volatile fatty acid concentrations and strong ions concentration, while guaranteeing the so‐called operational stability in anaerobic digestion (AD) processes. The proposed MIMO regulator is an adaptive controller derived from an AD model which incorporates the physicochemical equilibrium of the system as well as the use of a robust interval observer to estimate key process bounds that are used in the computation of the control efforts. Numerical simulations were carried out for a number of operating conditions under the most uncertain scenarios. Results showed that the proposed multivariable control law is able to recover the system stability around a pre‐determined set point in the face of parameter uncertainty and load disturbances.  相似文献   
955.
A field study evaluating wetted radius (Wr), downward depth (Dd), and upward movement (Um) under different emitter discharges and lateral depths was conducted. Four emitter discharges (2, 4, 8, and 16 L/h) and four lateral depths (0, 10, 20, and 30 cm) were tested in a clay loam soil. Relationships were found between the emitter discharge and lateral depth versus Wr, Dd, and Um. Wetting area at the surface occurs under different emitter discharges and lateral depths except at 30 cm lateral depth. At lateral depth of 0 and 10 cm, Wr and emitter discharge were positively correlated. The Dd was not affected by emitter discharge except for laterals installed at 20 cm depth. At 30 cm lateral depth, the correlations between each of Wr, Um, and Dd with emitter discharge were poor. The ratios of Wr/Dd and Um/Dd, with respect to emitter position, were less than unity over different emitter discharges and lateral depths. These results shed some light on the design of subsurface drip irrigation scheme so that the spacing between emitters should be determined based on the lateral depths and discharge of emitters. Evaporation losses were negligible for the 30‐cm‐lateral depth since the upward moisture movement has not reached the soil surface area at all discharge rates tested in the study.  相似文献   
956.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   
957.
Sulfonamides (SAs) are one of the most frequently used antibiotics. SAs have been found in various environmental compartments. If SAs are not degraded in the environment, they can affect bacteria by their antibiotic properties and contribute to bacterial antibiotic resistance. Therefore, the biodegradability of 11 SAs (sulfanilamide, sulfaguanidine monohydrate, sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethazine, sulfamethoxazole, and sulfadimethoxine) was studied. For this purpose, the Closed Bottle Test (CBT, OECD 301D) was performed, which includes a toxicity control. In order to monitor the environmental fate of the parent compound and to check for transformation products, a simple, efficient, and reliable HPLC–UV method for the simultaneous determination of these SAs has been developed. Acetonitrile and water (with 0.1% formic acid) were used as mobile phase solvents for gradient elution. The method was validated in terms of precision, detection and quantitation limits, selectivity, and analytical solution stability. In the CBT, none of these SAs was readily biodegradable. The HPLC–UV analysis confirmed that no degradation of any SA took place. In the toxicity control, these SAs showed no toxic effect in the used concentration of environmental bacteria applied in the test.  相似文献   
958.
In this study we analyzed runoff and sediment yield from land under various traditional and current land uses in Mediterranean mountain areas, using long‐term data from an experimental station in the Aísa Valley, Central Spanish Pyrenees. Monitoring at this station has provided 20 years of data that can help explain the hydrological and geomorphological changes that have been observed at larger spatial scales, and also the changes that have occurred to some of the most characteristic landscapes of the Mediterranean middle mountains. In spite of the problems associated with the use of small experimental plots, the results obtained are consistent with other studies in the Mediterranean region, and confirm the strong influence of land use changes on runoff generation and sediment yield. The results indicate that: (i) cereal cultivation on steep slopes (both alternating cereal cultivation and fallow on sloping fields and shifting agriculture on the steepest slopes) represents a major problem for soil conservation. This explains the occurrence throughout the Mediterranean mountains of many degraded hillslopes, which show evidence of sheet wash erosion, rilling, gullying and shallow landsliding; (ii) farmland abandonment has led to a marked reduction in runoff and sediment yield as a consequence of rapid plant recolonization, particularly by dense shrubs; (iii) the natural transformation of abandoned fields into grazing meadows has reduced runoff and sediment yield. Land use trends in the Mediterranean mountains are mainly characterized by generalized farmland abandonment and a decrease in livestock pressure. From a hydrological and geomorphological point of view the main consequences have been a reduction in overland flow from the hillslopes, and a reduction in sediment sources, with differences up to one order of magnitude in sediment yield from dense shrub cover and grazing meadow areas compared with areas under shifting agriculture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
959.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
960.
The overall objective of this study is to improve the forecasting accuracy of the precipitation in the Singapore region by means of both rainfall forecasting and nowcasting. Numerical Weather Predication (NWP) and radar‐based rainfall nowcasting are two important sources for quantitative precipitation forecast. In this paper, an attempt to combine rainfall prediction from a high‐resolution mesoscale weather model and a radar‐based rainfall model was performed. Two rainfall forecasting methods were selected and examined: (i) the weather research and forecasting model (WRF); and (ii) a translation model (TM). The WRF model, at a high spatial resolution, was run over the domain of interest using the Global Forecast System data as initializing fields. Some heavy rainfall events were selected from data record and used to test the forecast capability of WRF and TM. Results obtained from TM and WRF were then combined together to form an ensemble rainfall forecasting model, by assigning weights of 0.7 and 0.3 weights to TM and WRF, respectively. This paper presented results from WRF and TM, and the resulting ensemble rainfall forecasting; comparisons with station data were conducted as well. It was shown that results from WRF are very useful as advisory of anticipated heavy rainfall events, whereas those from TM, which used information of rain cells already appearing on the radar screen, were more accurate for rainfall nowcasting as expected. The ensemble rainfall forecasting compares reasonably well with the station observation data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号