首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1721篇
  免费   67篇
  国内免费   18篇
测绘学   41篇
大气科学   123篇
地球物理   496篇
地质学   567篇
海洋学   165篇
天文学   281篇
综合类   6篇
自然地理   127篇
  2021年   19篇
  2020年   23篇
  2019年   24篇
  2018年   42篇
  2017年   32篇
  2016年   56篇
  2015年   36篇
  2014年   42篇
  2013年   83篇
  2012年   45篇
  2011年   62篇
  2010年   78篇
  2009年   75篇
  2008年   66篇
  2007年   83篇
  2006年   61篇
  2005年   55篇
  2004年   51篇
  2003年   52篇
  2002年   49篇
  2001年   26篇
  2000年   33篇
  1999年   28篇
  1998年   27篇
  1997年   28篇
  1996年   26篇
  1995年   29篇
  1994年   31篇
  1993年   14篇
  1992年   31篇
  1991年   29篇
  1990年   38篇
  1989年   25篇
  1988年   21篇
  1987年   17篇
  1986年   17篇
  1985年   28篇
  1984年   35篇
  1983年   26篇
  1982年   19篇
  1981年   30篇
  1980年   23篇
  1979年   21篇
  1978年   21篇
  1977年   15篇
  1976年   12篇
  1975年   12篇
  1974年   14篇
  1973年   15篇
  1971年   11篇
排序方式: 共有1806条查询结果,搜索用时 31 毫秒
821.
Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.  相似文献   
822.
823.
We present the results of our monitoring of the halo black hole soft X-ray transient (SXT) XTE J1118+480 during its decline to quiescence. The system has decayed 0.5 mag from 2000 December to its present near-quiescent level at   R ≃18.65  (2001 June). The ellipsoidal light curve is distorted by an additional modulation that we interpret as a superhump of   P sh=0.17049(1) d  i.e. 0.3 per cent longer than the orbital period. This implies a disc precession period   P prec∼52 d  . After correcting the average phase-folded light curve for veiling, the amplitude difference between the minima suggests that the binary inclination angle lies in the range   i =71–82°  . However, we urge caution in the interpretation of these values because of residual systematic contamination of the ellipsoidal light curve by the complex form of the superhump modulation. The orbital-mean H α profiles exhibit clear velocity variations with ∼500 km s−1 amplitude. We interpret this as the first spectroscopic evidence of an eccentric precessing disc.  相似文献   
824.
It is now recognised that the traditional method of calculating the LSR fails. We find an improved estimate of the LSR by making use of the larger and more accurate database provided by XHIP and repeating our preferred analysis from Francis and Anderson (New Astron 14:615–629, 2009a). We confirm an unexpected high value of $U_0$ by calculating the mean for stars with orbits sufficiently inclined to the galactic plane that they do not participate in bulk streaming motions. Our best estimate of the solar motion with respect to the LSR $(U_0, V_0, W_0) = (14.1\, \pm \, 1.1, 14.6\, \pm \, 0.4, 6.9\, \pm \, 0.1)$ km s $^{-1}$ .  相似文献   
825.
826.
Long-term spatial and temporal trends in frost indices in Kansas, USA   总被引:2,自引:0,他引:2  
Frost indices such as number of frost days (nFDs), number of frost-free days (nFFDs), last spring freeze (LSF), first fall freeze (FFF), and growing-season length (GSL) were calculated using daily minimum air temperature (Tmin) from 23 centennial weather stations across Kansas during four time periods (through 1919, 1920–1949, 1950–1979, and 1980–2009). A frost day is defined as a day with Tmin?<?0 °C. The long- and short-term trends in frost indices were analyzed at monthly, seasonal, and annual timescales. Probability of occurrence of the indices was analyzed at 5 %, 25 %, 50 %, 75 %, and 95 %. Results indicated a general increase in Tmin from 1900 through 2009 causing a decrease in nFDs. LSF and FFF occurred earlier and later than normal in the year, respectively, thereby resulting in an increase in GSL. In general, northwest Kansas recorded the greatest nFD and lowest Tmin, whereas southeast Kansas had the lowest nFD and highest Tmin; however, the magnitude of the trends in these indices varied with location, time period, and time scales. Based on the long-term records in most stations, LSF occurred earlier by 0.1–1.9 days/decade, FFF occurred later by 0.2–0.9 day/decade, and GSL was longer by 0.1–2.5 day/decade. At the 50 % probability level, Independence in the south-eastern part of Kansas had the earliest LSF (6 April), latest FFF (29 October) and longest GSL (207 days). Oberlin (north-western Kansas) recorded the shortest GSL (156 days) and earliest FFF (7 October) had the latest LSF (2 May) at the 50 % probability level. A positive correlation was observed for combinations of indices (LSF and GSL) and elevation, whereas a negative correlation was found between FFF and elevation.  相似文献   
827.
In a valley sheltered from strong synoptic effects, the dynamics of the valley atmosphere at night is dominated by katabatic winds. In a stably stratified atmosphere, these winds undergo temporal oscillations, whose frequency is given by $N \sin {\alpha }$ N sin α for an infinitely long slope of constant slope angle $\alpha $ α , $N$ N being the buoyancy frequency. Such an unsteady flow in a stably stratified atmosphere may also generate internal gravity waves (IGWs). The numerical study by Chemel et al. (Meteorol Atmos Phys 203:187–194, 2009) showed that, in the stable atmosphere of a deep valley, the oscillatory motions associated with the IGWs generated by katabatic winds are distinct from those of the katabatic winds. The IGW frequency was found to be independent of $\alpha $ α and about $0.8N$ 0.8 N . Their study did not consider the effects of the background stratification and valley geometry on these results. The present work extends this study by investigating those effects for a wide range of stratifications and slope angles, through numerical simulations for a deep valley. The two oscillatory systems are reproduced in the simulations. The frequency of the oscillations of the katabatic winds is found to be equal to $N$ N times the sine of the maximum slope angle. Remarkably, the IGW frequency is found to also vary as $C_\mathrm{w}N$ C w N , with $C_\mathrm{w}$ C w in the range $0.7$ 0.7 $0.95$ 0.95 . These values for $C_\mathrm{w}$ C w are similar to those reported for IGWs radiated by any turbulent field with no dominant frequency component. Results suggest that the IGW wavelength is controlled by the valley depth.  相似文献   
828.
829.
In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y−1 in Boston Harbor to declines as large as −33% y−1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from −0.06% y−1 to as high as −14.81% y−1. The median rate of decline by region ranged from −2.21% y−1 to −3.51% y−1 and was slightly less than the recently reported global rate of decline for seagrasses (−3.7% y−1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers.  相似文献   
830.
We report on the properties of a 99.3-d periodic modulation in the X-ray transient XTE J1716−389. We associate this source with the transient KS J1716−389, first detected by the Mir /Kvant module in 1994. The spectral characteristics of XTE J1716−389, a high intrinsic absorption column, strong emission features and a power-law spectrum, make it very similar to the class of highly absorbed X-ray binaries detected by INTEGRAL . We associate the 99.3-d periodic behaviour with the geometrical obscuration that results from a precessing circumbinary disc that is moving in and out of the field of view, comparable to what has been proposed for SS 433. We therefore propose that XTE J1716−389 is a high-mass X-ray binary with a supergiant companion that is similar not only to SS 433, but also to the new class of highly obscured X-ray binaries, suggesting that SS 433 is a member of much wider population that is now being detected by INTEGRAL .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号