首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27194篇
  免费   297篇
  国内免费   400篇
测绘学   832篇
大气科学   2201篇
地球物理   4445篇
地质学   13255篇
海洋学   1747篇
天文学   4223篇
综合类   317篇
自然地理   871篇
  2023年   27篇
  2022年   68篇
  2021年   76篇
  2020年   66篇
  2019年   57篇
  2018年   3433篇
  2017年   3236篇
  2016年   1866篇
  2015年   219篇
  2014年   160篇
  2013年   118篇
  2012年   1293篇
  2011年   3054篇
  2010年   2900篇
  2009年   2939篇
  2008年   2274篇
  2007年   3022篇
  2006年   122篇
  2005年   577篇
  2004年   460篇
  2003年   552篇
  2002年   341篇
  2001年   83篇
  2000年   100篇
  1999年   84篇
  1998年   62篇
  1997年   69篇
  1996年   78篇
  1995年   55篇
  1994年   58篇
  1993年   50篇
  1992年   42篇
  1991年   37篇
  1990年   29篇
  1989年   39篇
  1988年   25篇
  1987年   18篇
  1986年   23篇
  1985年   22篇
  1984年   9篇
  1983年   18篇
  1982年   10篇
  1981年   30篇
  1980年   32篇
  1979年   6篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1973年   6篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
971.
Geoelectrical survey was carried out in the western delta region of River Vasista Godavari, Andhra Pradesh, India, for delineation of groundwater prospective zones due to acute shortage of water supply for various purposes. Forty-six vertical electrical soundings (VES) were done, employing the Schlumberger configuration with a maximum AB/2 of 160 m. The interpreted results of VES show four to five layers with variable thicknesses, such as topsoil zone (1.5–3 m), clay zone (0.84–32 m), finer sand zone (2–72 m), medium to coarse sand zone (4 to 28.8 m) and clay zone (1.2–∞ m), indicating a multi-aquifer system. These results are corroborated with the known lithologs of the study area. Further, the resistivity is also compared with electrical conductivity (EC) of groundwater observed nearby shallow wells representing buried channel (BC), flood plain (FP) and coastal (C) zones, which indicate slightly brackish to brackish water (EC: 1470–6010 µS/cm), whereas the groundwater observed from deep wells shows the fresh (EC: 726–1380 µS/cm), fresh to brackish (EC: 1010 to 3250 µS/cm), and brackish water (EC: 3020 to 4170 µS/cm) located in BC, FP and C zones, respectively. This survey reveals the prospective aquifer zones with potable water at VES locations of 4–6, 8, 10, 11, 14, 16–28, 33–36, 39 and 42–44, where the resistivity values vary from 10 to 40 Ω m. The slightly brackish and brackish water zones are also observed from the resistivity of less than 10 Ω m at shallow depth in BC (VES-22, 37, 38 and 46), FP (VES-1, 2, 7, 29, 30 and 40) and C (VES-3, 4, 9, 12, 13, 15, 31, 32, 41 and 45) zones. As a result, the present investigation has delineated the freshwater zones at shallow (<?12 m) and also at deeper depths (30–45 m) as prospective areas, where BC zone occurs. Freshwater pockets also identified in FP (VES-8 and 39) and C (VES-11, 14 and 15) zones. Thus, this study helps to solve the drinking and irrigation water problems.  相似文献   
972.
The first data on ecology and trace metal (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb) bioaccumulation by macrozoobenthic organisms in area along the 130°E meridional transect from shallow water near the Lena River’s delta till the 78°N are presented. At the newly discovered methane seeps in the shallow Laptev Sea areas (72 m depth), a higher total abundance and biomass compared with background stations were recorded. In carbonate shells and soft tissues of Bivalvia Portlandia arctica and Astarte borealis, the high concentrations of Mn, Fe, Pb, Ni and Co were detected that varied in dependence from sampling site. In the dominating taxa of brittle stars (Ophiuroidea), there were found no significant differences between majority of trace metal content in organisms inhabiting the seeps area and background ones. An elevated content of some metals was detected in the Asteroidea bodies that may be attributed to its trophic behavior (deposit feeder).  相似文献   
973.
The Himalayas are one of the largest cryospheric systems outside the Polar Regions, and include more than 12,000 glaciers spread over an area of about 33,000 km2. The Himalayan glaciers and snow packs retreating at an accelerating rate, thereby creating an alarming situation for the huge population that resides in northwestern India and southeastern Pakistan, as they depend on surface water resources in the region and rivers emanating from the Himalayas. This work attempts to quantify the contribution of different sources such as glacial/ice/snow melt and groundwater discharge to the Satluj River using the stable isotopes based hydrograph separation method at Ropar (foot hill) and Yusufpur in plain of Punjab, India. A mass balance model of three-component mixing has been engaged using the values of δ18O and electrical conductivity of the river water, and its discharge fraction, to estimate the time-varying relative proportion of each component from July 2013 to January 2014. The proportion of glacier melt was found to peak up to ~?64% at Ropar and ~?15% at Yusufpur during the wet summer months. The fraction of groundwater discharge was found to vary between 10–20% at Ropar and 25–35% at Yusufpur (Punjab plain) over time. The observed trend of d-excess (deuterium excess) values of river water also suggests that the glaciers and snow packs at higher altitudes contain a significant fraction of snow derived from vapor originating in the Mediterranean region, driven by the mid-latitude westerlies known as western disturbances.  相似文献   
974.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   
975.
The concept of the Borehole Diffusive Flux Apparatus (BDFA) is presented herein. The BDFA is an innovative apparatus designed to provide continuous direct access to an undisturbed column of sediment that can be monitored at multiple discrete vertical intervals to provide high-resolution characterization of local-scale mass transfer and attenuation. The conceptual basis and technical design of the device are presented, along with an example of borehole design and installation at a field site. Mathematical simulations are used to illustrate its application for two scenarios. The results of these simulations indicate that test periods of several weeks to a few months should be sufficient to obtain robust results. The device has the potential to improve our ability to characterize critical mass-transfer and attenuation processes and to quantify the associated rates. This information is key to the evaluation of remediation alternatives, for enhancing the accuracy of mathematical models, and to support more effective long-term management of large groundwater contaminant plumes present at many sites.  相似文献   
976.
The advent in satellite altimetry with the most accurate satellite radar altimeter since 1992 and its successive missions have enabled the routine global monitoring of water-level (or stage) for surface waters and changes in the quantities of dammed water reservoirs. However, satellite altimeter measurements typically have spatial resolution capable of observing only large water bodies, such as major lakes and rivers. This paper addresses the challenges of how to investigate water levels in medium (~?1 km in width) to small (~?100 m and narrower) rivers. Comparisons between the ENVISAT altimetry ICE-1 waveform retracking height and standard water-level measurements for multiple sections of Ohio River, Columbia River, and Red River of the North in the United States (US) reveals that the satellite altimetry measured water levels agree well with those observed at nearby US Geological Survey gaging stations over the 10-year period starting from 2002. The significant results include those obtained at Thompson, North Dakota (ND, correlation coefficient or R value of 0.76 between satellite and in situ water-level measurements) and Fargo, ND (R?=?0.74), where the stream channels of Red River are merely?~?50 m and ~?40 m wide, respectively, under normal climatic conditions. In addition, demonstrations of the approach over largely inaccessible portions of Tigris–Euphrates Rivers and Helmand River in the Middle East aided in understanding hydrology in these systems. This study demonstrates the ability of satellite radar altimetry to characterize rivers in these study regions which are much narrower than 100 m in width.  相似文献   
977.
Mountain massif Munku-Sardyk presents the highest mountain range and adjacent Stanovoy ridge highlands of the Eastern Sayan. There is situated modern glaciation site which was the most studied in the course of last 160 years. This periglacial area experienced different periods of cooling and warming in the Holocene and retained traces of the Sartan glaciation of Subboreal (3000–5000 years ago), the Little Ice Age, the evidences of Holocene optimum and general warming last time. The authors examined the variability of activity of modern glaciation and variation of natural conditions of the periglacial zone on climate and on dendrochronological data. Results of larch and Siberian stone pine growth data were revealed at the higher border of forest communities. Analysis of the growth of the “fossil” tree in the Holocene optimum showed that the absolute magnitude of its increment was two times higher than for up-to-date long-lived trees. Identified periods of the Peretolchin glacier retreat in 1900–1965 and 1983–2000 years took place with increased growth of trees and the rate of sedimentation in proglacial lake, and vice versa glacier advance on in 1965–1980 years was accompanied by slowing of tree increments and reduction in sedimentation rate. Since 2000, there has been growth of trees instability associated with a decrease in average monthly summer temperatures.  相似文献   
978.
The contamination levels of soils and water resources in Calabar, Nigeria have been investigated using resistivity (vertical electrical sounding and electrical resistivity tomography), geochemical analyses of soil and water resources and textural analysis. Sixty randomly sited VES sites were investigated in two seasons while ERT investigations were performed along four profiles. The geochemical investigations were spread across seasons in order to track seasonal changes in physico-chemical parameters: hydrogen ion concentration (pH), electrical conductivity, total dissolved solids, chloride ion (Cl?), nitrate ion (\( {\text{NO}}_{ 3}^{ - } \)), bicarbonate (\( {\text{HCO}}_{ 3}^{ - } \)), sulphate ion (\( {\text{SO}}_{ 4}^{2 - } \)), calcium ion (Ca2+), sodium ion (Na+), potassium ion (K+) and magnesium ion (Mg2+). Additionally, concentrations of ammonium, aluminium and nitrite ions in soils were determined. Results show that ionic concentrations in the sand-dominated soils and water are within permissible limits and baseline standards. The resistivities follow known trends in the area. However, at the central waste disposal site, a localised thin (< 5 m), low resistivity (< 15 Ωm) anomaly suspected to be due to contamination by leachates was observed. Comparatively, the contaminated area is also characterised by marginal increase in ionic concentrations. Strong attenuation capacities of overlying and adjoining clay/lateritic sediments and optimal design of the waste dump site probably reduced the spread of contaminants. The contaminated zone need to be closely monitored so that it does not extend to the aquifers. Hence, all strategies presently being used in managing wastes in Calabar should be sustained.  相似文献   
979.
A simulation framework based on Smoothed Particle Hydrodynamics (SPH) is introduced to model problems involving the interaction between flowing water and soil deformation. Changes in soil porosity and associated permeability are automatically adjusted within this framework. The framework’s capabilities are presented and discussed for three geotechnical problems caused by flowing water. The comparison between simulation results and experiments shows that SPH with the proposed concept is capable of quantitatively simulating the hydro-mechanical processes beyond limit state with satisfactory agreement. To improve the computational stability, a correction procedure and a new algorithm for the selection of the optimal time step are introduced.  相似文献   
980.
In this work, we consider a new model for flow in a multiporosity shale gas reservoir constructed within the framework of an upscaling procedure where hydraulic fractures are treated as (\(n-1\)) interfaces (\(n=2,3\)). Within this framework, the hydrodynamics is governed by a new pressure equation in the shale matrix which is treated as a homogenized porous medium composed of organic matter (kerogen aggregates with nanopores) and inorganic impermeable solid (clay, calcite, quartz) separated from each other by a network of interparticle pores of micrometer size. The solution of the pressure equation is strongly influenced by the constitutive response of the retardation parameter and effective hydraulic conductivity where the former incorporates gas adsorption/desorption in the nanopores of the kerogen. By focusing our analyses on this nonlinear diffusion equation in the domain occupied by the shale matrix, an optimization strategy seated on the adjoint sensitivity method is developed to minimize a cost functional related to gas production and net present value in a single hydraulic fracture. The gradient of the objective functional computed with the adjoint formulation is explored to update the controlled pressure drop aiming to optimize production in a given window of time. The combination of the direct approach and gradient-based optimization using the adjoint formulation leads to the construction of optimal production scenarios under controlled pressure decline in the well. Numerical simulations illustrate the potential of the methodology proposed herein in optimizing gas production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号