首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   42篇
  国内免费   10篇
测绘学   21篇
大气科学   84篇
地球物理   178篇
地质学   367篇
海洋学   107篇
天文学   80篇
综合类   4篇
自然地理   27篇
  2024年   3篇
  2023年   5篇
  2022年   15篇
  2021年   26篇
  2020年   22篇
  2019年   18篇
  2018年   35篇
  2017年   32篇
  2016年   48篇
  2015年   27篇
  2014年   34篇
  2013年   50篇
  2012年   47篇
  2011年   58篇
  2010年   45篇
  2009年   48篇
  2008年   63篇
  2007年   36篇
  2006年   45篇
  2005年   34篇
  2004年   23篇
  2003年   25篇
  2002年   31篇
  2001年   24篇
  2000年   14篇
  1999年   6篇
  1998年   11篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有868条查询结果,搜索用时 15 毫秒
31.
The main aim of this research was to assess the mercury transport from an estuarine basin with a background of anthropogenic contamination during a spring tidal cycle (year 2009) and compare it with two previous tidal cycles (years 1994 and 1999), as part of a long‐term monitoring program. Results showed that effective mercury transport occurs both in the dissolved and particulate fractions (0.18 and 0.20 kg per tidal cycle, respectively), and despite an overall decrease in environmental contamination, results more than double previous findings on particulate transport in the system. These findings result essentially from changes in the tidal prism (net export of 2 million m3 of water), given that both dissolved and particulate concentrations did not increase over time. Hydrodynamic simulations were performed to evaluate the effect of physical disturbance (dredging) and weather events (increased freshwater flow) in these processes, and results suggest the increased freshwater flow into the system as the main forcing function for the mercury transport increment. These results highlight the importance of long‐term monitoring programs, since despite an overall improvement in local contamination levels, the enhancement of transport processes through hydrological changes increases environmental pressure away from the contamination source. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
32.
This paper reports improvements to algorithms for the simulation of 3-D hydraulic fracturing with the Generalized Finite Element Method (GFEM). Three optimizations are presented and analyzed. First, an improved initial guess based on solving a 3-D elastic problem with the pressure from the previous step is shown to decrease the number of Newton iterations and increase robustness. Second, an improved methodology to find the time step that leads to fracture propagation is proposed and shown to decrease significantly the number of iterations. Third, reduced computational cost is observed by properly recycling the linear part of the coupled stiffness matrix. Two representative examples are used to analyze these improvements. Additionally, a methodology to include the leak-off term is presented and verified against asymptotic analytical solutions. Conservation of mass is shown to be well satisfied in all examples.  相似文献   
33.
This study addresses paleoclimate influences in a southern Amazonia ecotone based on multiproxy records from lakes of the Carajás region during the last 45k cal a bp. Wet and cool environmental conditions marked the initial deposition in shallow depressions with detrital sediments and high weathering rates until 40k cal a bp. Concomitantly, forest and C3 canga plants, along with cool-adapted taxa, developed; however, short drier episodes enabled expansion of C4 plants and diagenetic formation of siderite. A massive event of siderite formation occurred approximately 30k cal a bp under strong drier conditions. Afterwards, wet and cool environmental conditions returned and persisted until the Last Glacial Maximum (LGM). The LGM was marked by lake-level lowstands and subaerial exposure. The transition from the LGM to the Holocene is marked by the onset of oscillations in temperature and humidity, with an expansion of forest and canga plants. Cool taxa were present for the last time in the Carajás region ~ 9.5–9k cal a bp. After 10k cal a bp , shallow lakes became upland swamps due to natural infilling processes, but the current vegetation types and structures of the plateaus were acquired only after 3k cal a bp under wetter climatic conditions.  相似文献   
34.
Multipath remains one of the major challenges in Global Navigation Satellite System (GNSS) positioning because it is considered the dominant source of ranging errors, which can be classified into specular and diffuse types. We present a new method using wavelets to extract the pseudorange multipath in the time domain and breaking it down into the two components. The main idea is an analysis-reconstruction approach based on application of both continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The proposed procedure involves the use of L1 code-minus-carrier (CMC) observable where higher-frequency terms are isolated as residuals. CMC residuals are analyzed by applying the CWT, and we propose the scalogram as a technique for discerning time–frequency variations of the multipath signal. Unlike Fourier transform, the potential of the CWT scalogram for examining the non-stationary and multifrequency nature of the multipath is confirmed as it simultaneously allows fine detection and time localization of the most representative frequencies of the signal. This interpretation of the CWT scalogram is relevant when choosing the levels of reconstruction with DWT, allowing accurate time domain extraction of both the specular and diffuse multipath. The performance and robustness of the method and its boundary applicability are assessed. The experiment was carried out using a receiver of Campania GNSS Network. The results are given in which specular multipath error is achieved using DWT level 7 approximation component and diffuse multipath error is achieved using DWT level 6 denoised detail component.  相似文献   
35.
The southern margin of Australia is a passive continental margin, formed during a Late Jurassic–Cretaceous rifting phase. The development of this passive margin is mainly associated with extensional processes that caused crustal thinning. In this work, we have measured the amount of extension and the stretching factor (β factor) across seven transect profiles approximately evenly distributed across the margin. The obtained results show that the amount of extension and the β factor along the margin vary from west to east. The lowest amount of extension, low–intermediate β factors and a very narrow margin are observed in the western part with 80 km of extension and is underlain mostly by the Archean Yilgarn Craton and the Albany–Fraser Orogen. The Gawler Craton in the centre of the south Australian margin is another region of low extension and low–intermediate β factor. The largest amount of extension (384 km) and the largest β factor (β = 1.88) are found in the eastern part of the passive margin in an area underlain by Phanerozoic Tasman Orogen units. Our results imply that there is a strong control of the age and thickness of the continental lithosphere on the style of rifting along the Australian passive margin. Rifting of old and cold lithosphere results in a narrow passive margin, with the formation of relatively few faults with relatively wide spacing, while rifting of younger, warmer lithosphere leads to wide rifting that is accommodated by a large number of faults with small spacing.  相似文献   
36.
37.
38.
39.
The ~?2-km-thick Panzhihua gabbroic-layered intrusion in SW China is unusual because it hosts a giant Fe–Ti oxide deposit in its lower zone. The deposit consists of laterally extensive net-textured and massive Fe–Ti oxide ore layers, the thickest of which is ~?60 m. To examine the magmatic processes that resulted in the Fe enrichment of parental high-Ti basaltic magma and the formation of thick, Fe–Ti oxide ore layers, we carried out a detailed study of melt inclusions in apatite from a ~?500-m-thick profile of apatite-bearing leucogabbro in the middle zone of the intrusion. The apatite-hosted melt inclusions are light to dark brown in color and appear as polygonal, rounded, oval and negative crystal shapes, which range from ~?5 to ~?50 µm in width and from ~?5 to ~?100 µm in length. They have highly variable compositions and show a large and continuous range of SiO2 and FeOt with contrasting end-members; one end-member being Fe-rich and Si-poor (40.2 wt% FeOt and 17.7 wt% SiO2) and the other being Si-rich and Fe-poor (74.0 wt% SiO2 and 1.20 wt% FeOt). This range in composition may be attributed to entrapment of the melt inclusions over a range of temperature and may reflect the presence of µm-scale and immiscible Fe-rich and Si-rich components in different proportions. Simulating results for the motion of Si-rich droplets within a crystal mush indicate that Si-rich droplets would be separated from Fe-rich melt and migrate upward due to density differences in the interstitial liquid when the magma unmixed. Migration of the Si-rich, immiscible liquid component from the interstitial liquid caused the remaining Fe-rich melt in the lower part to react with plagioclase primocrysts (An59–60), as evidenced by fine-grained lamellar intergrowth of An-rich plagioclase (An79–84)?+?clinopyroxene in the oxide gabbro of the lower zone. Therefore, magma unmixing within a crystal mush, combined with gravitationally driven loss of the Si-rich component, resulted in the formation of Fe-rich, melagabbro and major Fe–Ti oxide ores in the lower part and Si-rich, leucogabbro in the upper part of the intrusion.  相似文献   
40.

Background

Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands.

Results

All three intensification strategies produced 11.6–12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015–2045 and 2046–2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time.

Conclusions

No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号