首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   8篇
大气科学   2篇
地球物理   30篇
地质学   28篇
海洋学   2篇
天文学   7篇
综合类   1篇
自然地理   5篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   3篇
  1996年   2篇
  1994年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
21.
Stratigraphical-structural units separated by regional unconformities in the Andes of Peru and Chile, display a pattern of low grade burial metamorphism. Each stratigraphical-structural unit shows a particular facies series covering part or all the range between the zeolite and the greenschist facies. These facies series were episodically generated as part of the geological evolution of each unit prior to its own folding. Mineralogical breaks are found to coincide with the regional unconformities and often cases of higher grade assemblages on top of lower grade ones occur. This pattern may be explained by a process of sealing of each unit after its particular metamorphic episode took place. Porosity and permeability conditioning P f, as demonstrated for individual lava flows, are the significant controlling factors in the production of the metamorphic assemblages.  相似文献   
22.
A large-eddy simulation (LES) with the dynamic Smagorinsky-Germano subgrid-scale (SGS) model is used to study the dispersion of solid particles in a turbulent boundary layer. Solid particles are tracked in a Lagrangian way. The instantaneous velocity of the surrounding fluid is considered to have a large-scale part (directly computed by the LES) and a small-scale part. The SGS velocity of the surrounding fluid is given by a three-dimensional Langevin model written in terms of SGS statistics at a mesh level. An appropriate Lagrangian correlation time scale is considered in order to include the influences of gravity and inertia of the solid particle. Inter-particle collisions and the influence of particles on the mean flow are also taken into account. The results of the LES are compared with the wind-tunnel experiments of Nalpanis et al. (1993 J Fluid Mech 251: 661–685) and of Tanière et al. (1997 Exp in Fluids 23:463–471) on sand particles in saltation and in modified saltation, respectively.  相似文献   
23.
The relevant potential theory is given for a current point source in the presence of a conductive slab embedded in a homogeneous host region of infinite extent. The thin sheet representation is obtained from the exact integral formulation by a simple mathematical limit process. The same result is also deduced directly at the outset by applying a thin sheet boundary condition. The apparent resistivity for a two electrode array is then computed for the case where the bore hole intersects the thin sheet at right angles. The corresponding results for the dilution factor, relevant to the induced polarization response, are also obtained. It is shown that the apparent resistivity and the dilution factor are constant when the potential and the current electrode straddle the sheet but there is a characteristic decrease as the electrodes move away from the sheet.  相似文献   
24.
Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to interpret hydrologic controls on biogeochemical processes and to manage water resources. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water did not conform to the commonly observed “elevation effect,” which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2–3 weeks for isotopic analysis for 1 year. Our results confirmed the lack of elevational variation of surface water isotopes within this leeward basin. Although we find elevational variation in precipitation in the eastern portion of the watershed, this elevation effect is counteracted by rainout with distance from the Pacific coast. In addition, we found significant variation in surface water isotope values between catchments underlain predominantly by basalt or sandstone. The degree of separation was strongest during the summer when low flows reflect deeper groundwater sources. This indicates that baseflow within streams drained by each lithology is being supplied from two distinctly separate water sources. In addition, the flow of the Marys River is dominated by water originating from the sandstone water source, particularly during the low‐flow summer months. We interpreted that the difference in water source results from sandstone catchments having highly fractured geology or locally tipping to the east facilitating cross‐basin water exchange from the windward to the leeward side of the Coast Range. Our results challenge topographic derived watershed boundaries in permeable sedimentary rocks; highlighting the overwhelming importance of underlying geology.  相似文献   
25.
Long-term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road-related landslides. We examined a 50-year record from paired-watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450-year-old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi-decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre-harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre-treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre-treatment levels throughout the fourth or fifth decade, potentially impacted by post-harvest burning, roads, and landslides. Quickflow remained high throughout the 50-year period of study, and much higher than delayed flow in the last two decades in a watershed in which road-related changes in flow routing and debris flows after the flood of record increased network connectivity. A long-term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old-growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long-term watershed experiments.  相似文献   
26.
We present field and seismic evidence for the existence of Coniacian–Campanian syntectonic angular unconformities within basal foreland basin sequences of the Austral or Magallanes Basin, with implications for the understanding of deformation and sedimentation in the southern Patagonian Andes. The studied sequences belong to the mainly turbiditic Upper Cretaceous Cerro Toro Formation that includes a world‐class example of conglomerate‐filled deep‐water channel bodies deposited in an axial foredeep depocentre. We present multiple evidence of syntectonic deposition showing that the present internal domain of the fold‐thrust belt was an active Coniacian–Campanian wedge‐top depozone where deposition of turbidites and conglomerate channels of Cerro Toro took place. Cretaceous synsedimentary deformation was dominated by positive inversion of Jurassic extensional structures that produced elongated axial submarine trenches separated by structural highs controlling the development and distribution of axial channels. The position of Coniacian‐Campanian unconformities indicates a ca. 50–80 km advance of the orogenic front throughout the internal domain, implying that Late Cretaceous deformation was more significant in terms of widening the orogenic wedge than all subsequent Andean deformation stages. This south Patagonian orogenic event can be related to compressional stresses generated by the combination of both the collision of the western margin of Rocas Verdes Basin during its closure, and Atlantic ridge push forces due to its accelerated opening, during a global‐scale plate reorganization event.  相似文献   
27.
Risk evaluation and loss analysis is key in foreseeing the impact of disasters caused by natural hazards and may contribute effectively in improving resilience in a community through the pre-evaluation of preparedness and mitigation actions. The pilot study presented herein is for the Chilean city of Iquique, which is located at the core of a seismic gap that extends from south Perú to north Chile, and has strategic geopolitical and economic importance for the country. The region was hit April 1, 2014, by an \(M_\mathrm{w}\) 8.2 earthquake that caused only moderate damage, but seismological evidence suggests that there is still a potential for a much larger event in the region. Therefore, a careful damage assessment study is fundamental to anticipate the possible physical, social, and economic consequences that Iquique may face in the future. In this work, the HAZUS-MH platform was adapted and used to simulate a set of ten plausible physics-based future seismic scenarios with magnitudes ranging from \(M_\mathrm{w}\) 8.40 to \(M_\mathrm{w}\) 8.98, which were proposed based on an analysis of interplate locking and the residual slip potential remaining after the April 1, 2014, earthquake. Successful application of this damage assessment methodology relies on the construction of a comprehensive exposure model that takes into account regional features and a good characterization of the physical vulnerabilities. For Iquique, a large body of public and local data was used to develop a detailed inventory of physical and social assets including an aggregated building count, demographics, and essential facilities. To characterize the response of the built environment to seismic demand, appropriate HAZUS fragility curves were applied, and outcomes were validated against the damage observed in the 2014 earthquake. After satisfactory testing, a deterministic earthquake damage assessment study was carried out for the collection of predictive scenarios aimed to estimate their expected impacts. This analysis provides data for future evaluations of different physical and social mitigation measures for the city.  相似文献   
28.
Asymmetric structures experience uneven deformation demand among different resisting planes and stories when subjected to earthquake excitation. Damage is focused in some elements jeopardizing structural integrity. These structures are common in professional practice because of architectural and functionality constraints. In this scenario the use of energy dissipation devices (EDD) has arisen as an advisable solution to balance and minimize structural damage. Procedures for the design of linear structures equipped with EDD have been widely proposed in the literature, few of them deal with the optimum spatial distribution of nonlinear systems. This paper evaluates and compares the optimized spatial damper distribution of linear and nonlinear systems. An optimization technique is presented based on control indexes called min–max algorithm. Then, this technique is compared with two simple methodologies: (i) the fully stressed design, which is an analysis‐redesign procedure, and (ii) the simplified sequential search algorithm (SSSA), which is a sequential method. It is pointed out that the SSSA is a fixed step coordinate descent type method. The examples considered show that the SSSA is a discrete approximation of the min–max algorithm, not only for linear but also for nonlinear structures equipped with linear and nonlinear EDD. Furthermore, it is found that the distribution of EDD obtained from a linear analysis is a good approximation of the nonlinear optimal solution. The SSSA is a reliable method that can be applied to achieve drift and torsional balance for design purposes; moreover, it can be implemented with conventional tools available in professional practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
29.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   
30.
Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号