首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地球物理   13篇
地质学   26篇
海洋学   2篇
自然地理   4篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
11.

Phosphorus (P) is an essential nutrient required for plant growth and at the same time a costly pollutant, which can cause eutrophication of water bodies. Modern agriculture relies heavily on mineral fertilisers, which contain phosphorus derived from phosphate rock, because, without regular applications, crop yields would be limited. Since phosphate rock is a non-renewable resource, there are growing concerns regarding future phosphorus scarcity and the sustainability of modern agriculture. For many farmers, animal manure was once a means of maintaining soil fertility, but now it presents a major operational problem. This study evaluated the possibility of recycling phosphorus on a national and regional scale in Italy, using major sources of manure and wastewater. These results were successively compared with an estimate of the agricultural demand for phosphorus. Considering the quantity of phosphorus fertilizer that was applied to the soil–plant system, for the years 2001–2010, the annual phosphorus requirement of Italian crops was about 101,000 t of P. Therefore, the phosphorus source comprising animal manure and civil/industrial waste (117,500 t of P and 40,000 t of P, respectively) could potentially satisfy the average annual agronomic phosphorus demand. Regarding the geographical distribution of phosphorus supply and demand on a regional scale, areas with a large deficit of phosphorus included Calabria, Puglia and Marche. However, when only livestock waste was considered, Sicily, Umbria and Friuli could also be considered to be regions experiencing a phosphorus deficit.

  相似文献   
12.
Computational Geosciences - The SOC change index, defined as the normalized difference between the actual Soil Organic Carbon and the value assumed at an initial reference year, is here tailored to...  相似文献   
13.
14.
The oxygen isotope geochemistry and chemical composition of clinopyroxene crystals from Alban Hills pyroclastic deposits constrain the petrological evolution of ultrapotassic Roman-type rocks. Volcanic eruptions in the 560–35 ka time interval produced thick pyroclastic deposits bearing clinopyroxene phenocrysts with recurrent chemical characteristics. Clinopyroxenes vary from Si–Mg-rich to Al–Fe-rich with no compositional break, indicating that they were derived from a continuous process of crystal fractionation. Based on the 18O and trace element data no primitive samples were recovered: monomineralic clinopyroxene cumulates set the oxygen isotope composition of primary magmas in the range of uncontaminated mantle rocks (5.5), but their REE composition resulted from extensive crystal fractionation. Departing from these mantle-like 18OCpx values the effects of crustal contamination of clinopyroxene O-isotope composition were identified and used to monitor chemical variations in the parental magma. 18O values in Si–Mg-rich clinopyroxene are slightly higher than typical mantle values (5.9–6.2), and the low REE contents are representative of early stages of magmatic differentiation. 18O values as high as 8.2 are associated with Al–Fe3+-rich clinopyroxene showing high REE contents. These 18O values are characteristic of crystals formed during the late magmatic stages of each main eruptive phase. Geochemical modelling of 18O values vs. trace element contents indicates that these ultrapotassic magmas were derived from fractional crystallization plus assimilation of limited amounts of carbonate wall rocks starting from a primary melt, and from interaction with CO2 derived from country rocks during crystal fractionation.  相似文献   
15.
Diffusion of Zr and zircon solubility in hydrous, containing approximately 4.5 wt% H2O, metaluminous granitic melts with halogens, either 0.35 wt% Cl (LCl) or 1.2 wt% F (MRF), and in a halogen-free melt (LCO) were measured at 1.0 GPa and temperatures between 1,050 and 1,400 °C in a piston-cylinder apparatus using the zircon dissolution technique. Arrhenius equations for Zr diffusion in each hydrous melt composition are, for LCO with 4.4ǂ.4 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaI4aaocqaI4aaocqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaIZaWmcqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabiIda4aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIXaqmcqaI0aancqaIWaamcqGGUaGlcqaIXa % qmcqGHXcqScqaIZaWmcqaIZaWmcqGGUaGlcqaI5aqoaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!571F! D = 2.88 ±0.03x10 - 8 exp( [( - 140.1 ±33.9)/(RT)] )D = 2.88 \pm 0.03x10^{ - 8} \exp \left( {{{ - 140.1 \pm 33.9} \over {RT}}} \right) , for LCl with 4.5ǂ.5 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaIZaWmcqaIZaWmcqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaI1aqncqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabisda0aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIYaGmcqaI1aqncqaI0aancqGGUaGlcqaI4a % aocqGHXcqScqaI2aGncqaI0aancqGGUaGlcqaIXaqmaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!5719! D = 2.33 ±0.05x10 - 4 exp( [( - 254.8 ±64.1)/(RT)] )D = 2.33 \pm 0.05x10^{ - 4} \exp \left( {{{ - 254.8 \pm 64.1} \over {RT}}} \right) and for MRF with 4.9ǂ.3 wt% H2O: % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacqWGebarcqGH9aqpcq % aIYaGmcqGGUaGlcqaI1aqncqaI0aancqGHXcqScqaIWaamcqGGUaGl % cqaIWaamcqaIZaWmcqWG4baEcqaIXaqmcqaIWaamdaahaaWcbeqaai % abgkHiTiabiwda1aaakiGbcwgaLjabcIha4jabcchaWnaabmaabaWa % aSaaaeaacqGHsislcqaIYaGmcqaIYaGmcqaIZaWmcqGGUaGlcqaI4a % aocqGHXcqScqaIXaqmcqaI1aqncqGGUaGlcqaI1aqnaeaacqWGsbGu % cqWGubavaaaacaGLOaGaayzkaaaaaa!5715! D = 2.54 ±0.03x10 - 5 exp( [( - 223.8 ±15.5)/(RT)] )D = 2.54 \pm 0.03x10^{ - 5} \exp \left( {{{ - 223.8 \pm 15.5} \over {RT}}} \right) . Solubilities determined by the dissolution technique were reversed for LCO +4.5ǂ.5 wt% H2O by crystallization of a Zr-enriched glass of LCO composition at 1,200 and 1,050 °C at 1.0 GPa. The solubility data were used to calculate partition coefficients of Zr between zircon and hydrous melt, which are given by the following expressions: for LCO % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGOnayJa % eG4mamZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 1aqncqGGUaGlcqaI4aaocqaI3aWnaaa!5924! lnDZrzircon/melt = 1.63( [10000/(T)] ) - 5.87\ln D_{Zr}^{zircon/melt} = 1.63\left( {{{10000} \over T}} \right) - 5.87 , for LCl % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGinaqJa % eG4naCZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 0aancqGGUaGlcqaI3aWncqaI1aqnaaa!5920! lnDZrzircon/melt = 1.47( [10000/(T)] ) - 4.75\ln D_{Zr}^{zircon/melt} = 1.47\left( {{{10000} \over T}} \right) - 4.75 and, for MRF by % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9ir % Veeu0dXdh9vqqj-hEeeu0xXdbba9ev6pc9fs0-rqaqpepmKs4qpepe % I8kaL8kuc9pgc9q8qqaq-dhH6hb9hs0dXdHu6deP0u0-vr0-vr0db8 % meaabaqaciGacaGaaeaabaWaaeaaeaaakeaacyGGSbaBcqGGUbGBcq % WGebardaqhaaWcbaGaemOwaOLaemOCaihabaGaemOEaONaemyAaKMa % emOCaiNaem4yamMaem4Ba8MaemOBa4Maei4la8IaemyBa0Maemyzau % MaemiBaWMaemiDaqhaaOGaeyypa0JaeGymaeJaeiOla4IaeGinaqJa % eG4naCZaaeWaaeaadaWcaaqaaiabigdaXiabicdaWiabicdaWiabic % daWiabicdaWaqaaiabdsfaubaaaiaawIcacaGLPaaacqGHsislcqaI % 0aancqGGUaGlcqaI5aqocqaIXaqmaaa!591C! lnDZrzircon/melt = 1.47( [10000/(T)] ) - 4.91\ln D_{Zr}^{zircon/melt} = 1.47\left( {{{10000} \over T}} \right) - 4.91 . Experiments on the same compositions, but with water contents down to 0.5 wt%, demonstrated reductions in both the diffusion coefficient of Zr and zircon solubility in the melt. The addition of halogens at the concentration levels studied to metaluminous melts has a small effect on either the diffusion of Zr in the melt, or the solubility of zircon at all water concentrations and temperatures investigated. At 800 °C, the calculated diffusion coefficient of Zr is lowest in LCl, 9᎒-17 m2 s-1, and is highest in LCO, 4᎒-15 m2 s-1. Extrapolation of the halogen-free solubility data to a magmatic temperature of 800 °C yields solubilities of approximately one-third of those directly measured in similar compositions, predicted by earlier studies of zircon dissolution and based upon analyses of natural rocks. This discrepancy is attributed to the higher oxygen fugacity of the experiments of this study compared with previous studies and nature, and the effect of oxygen fugacity on the structural role of iron in the melt, which, in turn, affects zircon solubility, but does not significantly affect Zr diffusion.  相似文献   
16.
Halogen diffusion in a basaltic melt   总被引:2,自引:0,他引:2  
The diffusion of the halogens fluorine, chlorine and bromine was measured in a hawaiitic melt from Mt. Etna at 500 MPa and 1.0 GPa, 1250 to 1450 °C at anhydrous conditions; the diffusion of F and Cl in the melt was also studied with about 3 wt% of dissolved water. Experiments were performed using the diffusion-couple technique in a piston cylinder. Most experiments were performed with only one halogen diffusing between the halogen-enriched and halogen-poor halves of the diffusion couple, but a few experiments with a mixture of halogens (F, Cl and Br) were also performed in order to investigate the possibility of interactions between the halogens during diffusion. Fluorine and chlorine diffusivity show a very similar behavior, slightly diverging at low temperature. Bromine diffusion is a factor of about 2-5 lower than the other halogens in this study. Diffusion coefficients for fluorine range between 2.3 × 10−11 and 1.4 × 10−10 m2 s−1, for chlorine between 1.1 × 10−11 and 1.3 × 10−10 and for bromine between 9.4 × 10−12 and 6.8 × 10−11 m2 s−1. No pressure effect was detected at the conditions investigated. In experiments involving mixed halogens, the diffusivities appear to decrease slightly (by a factor of ∼3), and are more uniform among the three elements. However, activation energies for diffusion do not appear to differ between experiments with individual halogens or when they are all mixed together. The effect of water increases the diffusion coefficients of F and Cl by no more than a factor of 3 compared to the anhydrous melt (DF = 4.0 × 10−11 to 1.6 × 10−10 m2 s−1; DCl = 3.0 × 10−11 to 1.9 × 10−10 m2 s−1). Comparing our results to the diffusion coefficients of other volatiles in nominally dry basaltic melts, halogen diffusivities are about one order of magnitude lower than H2O, similar to CO2, and a factor of ∼5 higher than S. The contrasting volatile diffusivities may affect the variable extent of volatile degassing upon melt depressurization and vesiculation, and can help our understanding of the compositions of rapidly grown magmatic bubbles.  相似文献   
17.
Generally, the intensity and magnitude of explosive volcanic activity increase in parallel with SiO2 content. Pyroclastic-flow-forming eruptions in the Colli Albani ultrapotassic volcanic district (Italy) represent the most striking exception on a global scale, with volumes on the order of tens of cubic kilometres and K-foiditic compositions (SiO2 even <42 wt.%). Here, we reconstruct the pre-eruptive scenario and event dynamics of the ~456 ka Pozzolane Rosse (PR) eruption, the largest mafic explosive event of the Colli Albani district. In particular, we focus on the driving mechanisms for the unusually explosive eruption of a low-viscosity, mafic magma. Geologic, petrographic and geochemical data with mass balance calculations, supported by experimental data for Colli Albani magma compositions, provide evidence for significant ingestion of carbonate wall rocks by the Pozzolane Rosse K-foiditic magma. Moreover, the scattered occurrence of cored bombs in Pozzolane Rosse pyroclastic-flow deposits records carbonate entrainment even at the eruptive time scale, as also tested quantitatively by thermal modelling of magma–carbonate interaction and carbonate assimilation experiments. We suggest that the addition of free CO2 from decarbonation of country rocks was the major factor controlling magma explosivity. High CO2 activity in the volatile component, coupled with magma depressurisation, produced extensive leucite crystallisation at short time scales, resulting in a dramatic increase in magma viscosity and volatile pressurisation, which was manifested a change of eruptive dynamics from early effusion to the Pozzolane Rosse's highly explosive eruption climax.  相似文献   
18.
Crystal-poor, differentiated magmas are commonly erupted from shallow, thermally zoned magma chambers. In order to constrain the origin of these magmas, we have experimentally investigated crystallization, differentiation and crystal-melt separation in presence of a thermal gradient. Experiments have been designed taking advantage of the innate temperature gradient of the piston cylinder apparatus and carried out on a phonolitic system at 0.3 GPa and temperature ranging from 1,050 to 800°C. Crystallization degree and melt composition in experimental products vary as a function of the temperature gradient. In particular, melt composition differentiates from tephri-phonolite (starting material) to phonolite moving from the hotter, glassy zone (T ≤ 1,050°C) towards the cooler, heterogeneously crystallized zone (T ≤ 900°C) of the charge. The heterogeneously crystallized zone is made up of: (1) a crystal-rich, mushy region (crystallinity >30 vol%), (2) a rigid crystal framework (crystallinity ≤80 vol%) and (3) glassy belts of phonolitic glass at the top. Thermal gradient experiments picture crystallization, differentiation and crystal-melt separation processes occurring in a thermally zoned environment and reveal that relatively large volumes of crystal-poor melt (glassy belts) can originate as a consequence of the instability and collapse of the rigid crystal framework. Analogously, in thermally zoned magma chambers, the development and collapse of a solidification front may represent the controlling mechanism originating large volumes of crystal-poor, differentiated magmas.  相似文献   
19.
Study of a longshore transect off Southern California suggests that the length scales (22 to 27 km) of phytoplankton species patches may be related to those of low-frequency currents. The patch boundaries were independent of shelf width but they were probably not independent of changes in chlorophyll fluorescence, temperature, and bottom topography.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号