首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   49篇
  国内免费   3篇
测绘学   27篇
大气科学   47篇
地球物理   234篇
地质学   298篇
海洋学   88篇
天文学   213篇
综合类   1篇
自然地理   80篇
  2021年   7篇
  2020年   9篇
  2019年   14篇
  2018年   21篇
  2017年   32篇
  2016年   34篇
  2015年   24篇
  2014年   19篇
  2013年   39篇
  2012年   27篇
  2011年   36篇
  2010年   40篇
  2009年   40篇
  2008年   45篇
  2007年   30篇
  2006年   28篇
  2005年   30篇
  2004年   25篇
  2003年   28篇
  2002年   20篇
  2001年   18篇
  2000年   24篇
  1999年   17篇
  1998年   12篇
  1997年   13篇
  1996年   20篇
  1995年   12篇
  1994年   14篇
  1993年   13篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1988年   11篇
  1987年   12篇
  1986年   14篇
  1985年   11篇
  1984年   14篇
  1983年   7篇
  1982年   13篇
  1981年   13篇
  1980年   12篇
  1979年   14篇
  1978年   8篇
  1977年   14篇
  1976年   13篇
  1975年   15篇
  1974年   17篇
  1973年   9篇
  1971年   7篇
  1968年   8篇
排序方式: 共有988条查询结果,搜索用时 78 毫秒
41.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   
42.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   
43.
A Permian (~265 Ma) intrusive complex which formed as a magmatic feeder reservoir to an immature island-arc volcano is fortuitously exposed in southern New Zealand. Known as the Greenhills Complex, this intrusion was emplaced at shallow crustal levels and consists of two layered bodies which were later intruded by a variety of dykes. Cumulates, which include dunite, olivine clinopyroxenite, olivine gabbro, and hornblende gabbro-norite, are related products of parent-magma fractionation. Both primary (magmatic) and secondary platinum-group minerals occur within dunite at one locality. Using the composition of cumulus minerals, mafic dykes and melt inclusions, we have determined that the parent magmas of the complex were hydrous, low-K island-arc tholeiites of ankaramitic affinities. Progressive magmatic differentiation of this parent magma generated fractionated melt of high-alumina basalt composition which is now preserved only as dykes which cut the Complex. Field evidence and cumulus mineral profiles reveal that the magma chambers experienced turbulent magmatic conditions during cumulate-rock formation. Recharge of the chambers by primitive magma is likely to have coincided with eruption of residual melt at the surface. Similar processes are inferred to account for volcanic-rock compositions in other parts of this arc terrane and in modern island-arc systems.  相似文献   
44.
The detailed examination of meteorites and interplanetary dust particles provides an opportunity to infer the origin of the organic matter found in primitive Solar System materials. If this organic matter were produced by aqueous alteration of elemental (graphitic or amorphous) carbon on an asteroid, then we would expect to see the organic matter occurring preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. On the other hand, if the organic matter were produced either during the nebula phase of Solar System evolution or in the interstellar medium, we might expect this organic matter to be incorporated into the dust as it formed. In that case pre-biotic organic matter would be present in both the anhydrous and the hydrated interplanetary materials. We have performed carbon X-ray absorption near-edge structure spectroscopy and infrared spectroscopy on primitive anhydrous and hydrated interplanetary dust particles (IDPs) collected by NASA from the Earth's stratosphere. We find that organic matter is present in similar types and abundances in both the anhydrous and the hydrated IDPs, and, in the anhydrous IDPs some of this organic matter is the “glue” that holds grains together. These measurements provide the first direct, experimental evidence from the comparison of extraterrestrial samples that the bulk of the pre-biotic organic matter occurs in similar types and abundances in both hydrated and anhydrous samples. This indicates that the bulk of the pre-biotic organic matter in the Solar System did not form by aqueous processing, but, instead, had already formed at the time that primitive, anhydrous dust was being assembled. Thus, the bulk of the pre-biotic organic matter in the Solar System was formed by non-aqueous processing, occurring in either the Solar nebula or in an interstellar environment. Aqueous processing on asteroids may have altered this pre-existing organic matter, but such processing did not affect in any substantial way the C=O content of the organic matter, the aliphatic C-H abundance, or the mean aliphatic chain length.  相似文献   
45.
A combination of field studies and mathematical modeling was used to examine the role of subtidal benthic algae in the eutrophication processes in two shallow estuarine systems. Field measurements indicated uptake by benthic algae retained ammonium and phosphate in the sediments when light at the sediment surface exceeded ≈150 μE m2 s?1. The measurements were used to calibrate a newly developed model of benthic algal activity. The benthic algal model was coupled with a hydrodynamic model, a eutrophication model, and a sediment diagenesis model. In the simulated ecosystem, benthic algae had a major influence in the intra-annual cycling of nitrogen and phosphorus. When nutrients were abundant in the water column (late winter and spring) they were transferred to the sediments through algal activity. Diagenesis released these nutrients to the water column in summer when nutrients were scarce. As a result of the nutrient transfer, annual primary production in the water column, in the presence of benthic algae, exceeded production in the absence of the algae.  相似文献   
46.
47.
A specially designed 700-km2 grid survey, deploying 1000 regularly distributed low-frequency seismic recording systems, successfully investigated one of the most complex geologic environments of the Pannonian basin. The wide-angle signals penetrated through over 1000 m of multi-phase igneous lithology and recognized, for the first time, the underlying enigmatic Permian to Early Triassic basement rocks. Tomographic inversion of the first arrival grid data resulted in determination of an accurate three-dimensional (3-D) velocity field, to a depth of 4 km. The anomalous changes of the spatial velocity data outline the regional extent of the Late Miocene magmatic intrusions, which are covered by over 2000 m of Mid-Miocene to Pleistocene clastics. Complex relationship was found between the surface potential data and the intrusive bodies. This multi-faceted geophysical data analysis established a functional technique for mapping a subsurface with intricate acoustic and structural complexity.  相似文献   
48.
49.
Pollen collected from snow samples on the Quelccaya Ice Cap in 2000 and 2001 reveals significant interannual variability in pollen assemblage, concentration, and provenance. Samples from 2000, a La Niña year, contain high pollen concentrations and resemble samples from the Andean forests (Yungas) to the east. Samples from 2001, an El Niño year, contain fewer pollen and resemble those from the Altiplano. We suggest that varying wind patterns under different El Niño/Southern Oscillation (ENSO) conditions may affect the processes of pollen transport over the Altiplano and on the ice cap, although confounding variables such as flowering phenology and sublimation should also be considered  相似文献   
50.
This paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases—a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号